首页> 外文期刊>Image and Vision Computing >Attribute annotation on large-scale image database by active knowledge transfer
【24h】

Attribute annotation on large-scale image database by active knowledge transfer

机译:通过主动知识转移对大型图像数据库进行属性标注

获取原文
获取原文并翻译 | 示例

摘要

Attributes are widely used in different vision tasks. However, existing attribute resources are quite limited and most of them are not in large scale. Current attribute annotation process is generally done by human, which is expensive and time-consuming. in this paper, we propose a novel framework to perform effective attribute annotations. Based on the common knowledge that attributes can be shared among different classes, we leverage the benefits of transfer learning and active learning together to transfer knowledge from some existing small attribute databases to large-scale target databases. In order to learn more robust attribute models, attribute relationships are incorporated to assist the learning process. Using the proposed framework, we conduct extensive experiments on two large-scale image databases, i.e. ImageNet and SUN Attribute, where high quality automatic attribute annotations are obtained. (C) 2018 Elsevier B.V. All rights reserved.
机译:属性广泛用于不同的视觉任务。但是,现有的属性资源非常有限,而且大多数资源规模都不大。当前的属性注释过程通常由人工完成,这既昂贵又费时。在本文中,我们提出了一种新颖的框架来执行有效的属性注释。基于属性可以在不同类别之间共享的常识,我们充分利用转移学习和主动学习的优势,将知识从一些现有的小属性数据库转移到大规模目标数据库。为了学习更强大的属性模型,合并了属性关系以辅助学习过程。使用提出的框架,我们在两个大型图像数据库(即ImageNet和SUN属性)上进行了广泛的实验,其中获得了高质量的自动属性注释。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号