首页> 外文期刊>Image and Vision Computing >Bayesian and non-Bayesian probabilistic models for medical image analysis
【24h】

Bayesian and non-Bayesian probabilistic models for medical image analysis

机译:用于医学图像分析的贝叶斯和非贝叶斯概率模型

获取原文
获取原文并翻译 | 示例

摘要

Bayesian approaches to data analysis are popular in machine vision, and yet the main advantage of Bayes theory, the ability to incorporate prior knowledge in the form of the prior probabilities, may lead to problems in some quantitative tasks. In this paper we demonstrate examples of Bayesian and non-Bayesian techniques from the area of magnetic resonance image (MRI) analysis. Issues raised by these examples are used to illustrate difficulties in Bayesian methods and to motivate an approach based on frequentist methods. We believe this approach to be more suited to quantitative data analysis, and provide a general theory for the use of these methods in learning (Bayes risk) systems and for data fusion. Proofs are given for the more novel aspects of the theory. We conclude with a discussion of the strengths and weaknesses, and the fundamental suitability, of Bayesian and non-Bayesian approaches for MRI analysis in particular, and for machine vision systems in general.
机译:贝叶斯数据分析方法在机器视觉中很流行,但是贝叶斯理论的主要优势(以先验概率的形式合并先验知识的能力)可能会导致某些定量任务出现问题。在本文中,我们从磁共振图像(MRI)分析领域演示了贝叶斯技术和非贝叶斯技术的示例。这些示例提出的问题用于说明贝叶斯方法中的困难,并激发基于常识性方法的方法。我们认为这种方法更适合于定量数据分析,并为在学习(贝叶斯风险)系统中使用这些方法以及进行数据融合提供了一般理论。证明了该理论更新颖的方面。最后,我们讨论了贝叶斯方法和非贝叶斯方法尤其适用于MRI分析以及一般而言机器视觉系统的优缺点和基本适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号