首页> 外文期刊>Image and Vision Computing >Object recognition and pose estimation using color cooccurrence histograms and geometric modeling
【24h】

Object recognition and pose estimation using color cooccurrence histograms and geometric modeling

机译:使用颜色共现直方图和几何建模的对象识别和姿态估计

获取原文
获取原文并翻译 | 示例

摘要

Robust techniques for object recognition and pose estimation are essential for robotic manipulation and object grasping. In this paper, a novel approach for object recognition and pose estimation based on color cooccurrence histograms and geometric modelling is presented. The particular problems addressed are: (ⅰ) robust recognition of objects in natural scenes, (ⅱ) estimation of partial pose using an appearance based approach, and (ⅲ) complete 6DOF model based pose estimation and tracking using geometric models. Our recognition scheme is based on the color cooccurrence histograms embedded in a classical learning framework that facilitates a 'winner-takes-all' strategy across different views and scales. The hypotheses generated in the recognition stage provide the basis for estimating the orientation of the object around the vertical axis. This prior, incomplete pose information is subsequently made precise by a technique that facilitates a geometric model of the object to estimate and continuously track the complete 6DOF pose of the object. Major contributions of the proposed system are the ability to automatically initiate an object tracking process, its robustness and invariance towards scaling and translations as well as the computational efficiency since both recognition and pose estimation rely on the same representation of the object. The performance of the system is evaluated in a domestic environment with changing lighting and background conditions on a set of everyday objects.
机译:强大的物体识别和姿态估计技术对于机器人操纵和物体抓握至关重要。本文提出了一种基于颜色共现直方图和几何建模的物体识别和姿态估计的新方法。解决的特定问题是:(ⅰ)对自然场景中的对象进行鲁棒性识别;(ⅱ)使用基于外观的方法估算部分姿势;以及(ⅲ)使用基于完整6DOF模型的姿势估算和使用几何模型进行跟踪。我们的识别方案基于嵌入经典学习框架中的颜色共现直方图,该直方图可促进跨不同视角和规模的“赢者通吃”策略。在识别阶段生成的假设为估算对象围绕垂直轴的方向提供了基础。随后,通过一种有助于对象的几何模型来估计并连续跟踪对象的完整6DOF姿势的技术,可以使此先验的,不完整的姿势信息变得精确。所提出系统的主要贡献在于能够自动启动对象跟踪过程,其对缩放和平移的鲁棒性和不变性以及计算效率,因为识别和姿势估计都依赖于对象的相同表示。该系统的性能是在家庭环境中通过对一组日常物品的照明和背景条件不断变化进行评估的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号