首页> 外文期刊>Image and Vision Computing >Knowledge-based adaptive thresholding segmentation of digital subtraction angiography images
【24h】

Knowledge-based adaptive thresholding segmentation of digital subtraction angiography images

机译:基于知识的数字减影血管造影图像自适应阈值分割

获取原文
获取原文并翻译 | 示例

摘要

Vessel segmentation is the base of three dimensional reconstruction on digital subtraction angiography (DSA) images. In this paper we propose two simple but efficient methods of vessel segmentation for DSA images. The original DSA image is divided into several appropriate subimages according to a prior knowledge of the diameter of vessels. We introduce the vessels existence measure to determine whether each subimage contains vessels and then choose an optimal threshold, respectively, for every subimage previously determined to contain vessels. Finally, an overall binarization of the original image is achieved by combining the thresholded subimages. Experiments are implemented on cerebral and hepatic DSA images. The results demonstrate that our proposed methods yield better binary results than global thresholding methods and some other local thresholding methods do.
机译:血管分割是基于数字减影血管造影(DSA)图像进行三维重建的基础。在本文中,我们提出了两种简单而有效的DSA图像血管分割方法。根据血管直径的先验知识,将原始DSA图像分为几个适当的子图像。我们介绍了血管存在度量,以确定每个子图像是否包含血管,然后分别针对先前确定要包含血管的每个子图像分别选择最佳阈值。最后,通过组合阈值子图像来实现原始图像的整体二值化。实验是在大脑和肝脏DSA图像上进行的。结果表明,我们提出的方法比全局阈值方法和其他一些局部阈值方法产生更好的二进制结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号