首页> 外文期刊>Image and Vision Computing >A highly accurate and computationally efficient approach for unconstrained iris segmentation
【24h】

A highly accurate and computationally efficient approach for unconstrained iris segmentation

机译:一种无约束虹膜分割的高精度和高效计算方法

获取原文
获取原文并翻译 | 示例

摘要

Biometric research has experienced significant advances in recent years given the need for more stringent security requirements. More important is the need to overcome the rigid constraints necessitated by the practical implementation of sensible but effective security methods such as iris recognition. An inventive iris acquisition method with less constrained image taking conditions can impose minimal to no constraints on the iris verification and identification process as well as on the subject. Consequently, to provide acceptable measures of accuracy, it is critical for such an iris recognition system to be complemented by a robust iris segmentation approach to overcome various noise effects introduced through image capture under different recording environments and scenarios. This research introduces a robust and fast segmentation approach towards less constrained iris recognition using noisy images contained in the UBIRIS.v2 database (the second version of the UBIRIS noisy iris database). The proposed algorithm consists of five steps, which include: (1) detecting the approximate localization of the eye area of the noisy image captured at the visible wavelength using the extracted sclera area, (2) defining the outer iris boundary which is the boundary between iris and sclera, (3) detecting the upper and lower eyelids, (4) conducting the verification and correction for outer iris boundary detection and (5) detecting the pupil area and eyelashes and providing means for verification of the reliability of the segmentation results. The results demonstrate that the accuracy is estimated as 98% when using 500 randomly selected images from the UBIRIS.v2 partial database, and estimated at ≥97% in a "Noisy Iris Challenge Evaluation (NICE.I)" in an international competition that involved 97 participants worldwide, ranking this research group in sixth position. This accuracy is achieved with a processing speed nearing real time.
机译:鉴于对更严格的安全性要求,生物特征识别研究近年来取得了重大进展。更重要的是,需要克服实际但明智而有效的安全方法(例如虹膜识别)的实际实施所必需的严格限制。具有较少约束的图像拍摄条件的本发明的虹膜获取方法可以对虹膜验证和识别过程以及对象施加最小的约束或没有约束。因此,为了提供可接受的精度度量,至关重要的是,这种虹膜识别系统必须通过强大的虹膜分割方法加以补充,以克服在不同记录环境和场景下通过图像捕获引入的各种噪声影响。这项研究使用UBIRIS.v2数据库(UBIRIS嘈杂虹膜数据库的第二版)中包含的嘈杂图像,引入了一种鲁棒且快速的分割方法,以减少约束虹膜的识别。所提出的算法包括五个步骤,其中包括:(1)使用提取的巩膜区域检测在可见光波长捕获的噪声图像的眼睛区域的近似定位,(2)定义外部虹膜边界,即虹膜之间的边界虹膜和巩膜,(3)检测上下眼睑,(4)进行外部虹膜边界检测的验证和校正,(5)检测瞳孔区域和睫毛,并提供用于验证分割结果可靠性的方法。结果表明,使用UBIRIS.v2部分数据库中的500张随机选择的图像时,准确性估计为98%,在涉及此项国际竞赛中的“嘈杂的虹膜挑战评估(NICE.I)”中,估计准确性为≥97%。全球有97位参与者,将该研究组排名第六。通过接近实时的处理速度可以达到这种精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号