首页> 外文期刊>Image and Vision Computing >Simultaneous particle tracking in multi-action motion models with synthesized paths
【24h】

Simultaneous particle tracking in multi-action motion models with synthesized paths

机译:具有合成路径的多动作运动模型中的同时粒子跟踪

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes human motion models of multiple actions for 3D pose tracking. A training pose sequence of each action, such as walking and jogging, is separately recorded by a motion capture system and modeled independently. This independent modeling of action-specific motions allows us 1) to optimize each model in accordance with only its respective motion and 2) to improve the scalability of the models. Unlike existing approaches with similar motion models (e.g. switching dynamical models), our pose tracking method uses the multiple models simultaneously for coping with ambiguous motions. For robust tracking with the multiple models, particle filtering is employed so that particles are distributed simultaneously in the models. Efficient use of the particles can be achieved by locating many particles in the model corresponding to an action that is currently observed. For transferring the particles among the models in quick response to changes in the action, transition paths are synthesized between the different models in order to virtually prepare inter-action motions. Experimental results demonstrate that the proposed models improve accuracy in pose tracking.
机译:本文提出了用于3D姿态跟踪的多种动作的人体运动模型。动作捕捉系统分别记录每个动作(如步行和慢跑)的训练姿势序列,并独立建模。这种针对特定动作的独立建模使我们1)仅根据其各自的动作来优化每个模型,以及2)改善模型的可伸缩性。与具有类似运动模型(例如切换动力学模型)的现有方法不同,我们的姿势跟踪方法同时使用多个模型来应对模棱两可的运动。为了对多个模型进行鲁棒的跟踪,采用了粒子滤波,以便粒子在模型中同时分布。通过在模型中放置许多与当前观察到的动作相对应的粒子,可以实现粒子的有效利用。为了快速响应动作变化在模型之间传输粒子,在不同模型之间合成了过渡路径,以虚拟地准备交互作用运动。实验结果表明,提出的模型提高了姿态跟踪的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号