首页> 外文期刊>Image and Vision Computing >Joint prototype and metric learning for image set classification: Application to video face identification
【24h】

Joint prototype and metric learning for image set classification: Application to video face identification

机译:联合原型和度量学习用于图像集分类:在视频人脸识别中的应用

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we address the problem of image set classification, where each set contains a different number of images acquired from the same subject. In most of the existing literature, each image set is modeled using all its available samples. As a result, the corresponding time and storage costs are high. To address this problem, we propose a joint prototype and metric learning approach. The prototypes are learned to represent each gallery image set using fewer samples without affecting the recognition performance. A Mahalanobis metric is learned simultaneously to measure the similarity between sets more accurately. In particular, each gallery set is represented as a regularized affine hull spanned by the learned prototypes. The set-to-set distance is optimized via updating the prototypes and the Mahalanobis metric in an alternating manner. To highlight the importance of representing image sets using fewer samples, we analyzed the corresponding test time complexity with respect to the number of images used per set. Experimental results using YouTube Celebrity, YouTube Faces, and ETH-80 datasets illustrate the efficiency on the task of video face recognition, and object categorization. (C) 2016 Elsevier B.V. All rights reserved.
机译:在本文中,我们解决了图像集分类的问题,其中每个图像集包含从同一主题获取的不同数量的图像。在大多数现有文献中,每个图像集都是使用其所有可用样本来建模的。结果,相应的时间和存储成本很高。为了解决这个问题,我们提出了一种联合原型和度量学习方法。学习原型以更少的样本表示每个画廊图像集,而不会影响识别性能。同时学习Mahalanobis度量以更准确地测量集合之间的相似性。尤其是,每个画廊集都表示为由学习到的原型跨越的正规化仿射外壳。通过以交替方式更新原型和Mahalanobis度量来优化设置距离。为了强调使用更少的样本表示图像集的重要性,我们针对每组使用的图像数量分析了相应的测试时间复杂度。使用YouTube名人,YouTube人脸和ETH-80数据集的实验结果说明了视频人脸识别和对象分类任务的效率。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号