首页> 外文期刊>Expert Systems with Application >Simultaneous learning of reduced prototypes and local metric for image set classification
【24h】

Simultaneous learning of reduced prototypes and local metric for image set classification

机译:同时学习简化的原型和局部度量进行图像集分类

获取原文
获取原文并翻译 | 示例

摘要

Classification based on image set is recently a competitive technique, where each set contains multiple images of a person or an object. As a widely used model, affine hull has shown its power in modeling image set. However, due to the existence of noise and outliers, the over-large affine hull usually matches fails when two hulls overlapped. Aiming at alleviating this handicap, this paper proposes a novel method for image set classification, namely Learning of Reduced Prototypes and Local Metric (LRPLM). Specifically, for each gallery image set, a reduced set of prototypes and an optimal local feature-wise metric are simultaneously learned, which jointly minimize the loss function involved the estimation of classification error probability. In doing so, LRPLM inherits the merits of affine hull with better representation to account for the unseen appearances and makes use of the powerful discriminative ability improved by the local metric. It looks like that LRPLM pulls similar image sets with the same class label "closer" to each other, while pushing dissimilar ones "far away". Extensive experiments illustrate the considerable effectiveness of LRPLM on three widely used datasets. As we know, classification is a research hotspot in expert and intelligent systems. Different from the previous classification methods, LRPLM focuses on image set-based classification technology, while most of them are single-shot classification technology. Thus, the proposed method can be considered as an expert system technology for medical diagnosis, security monitoring, object categorization, and biometrics recognition applications. (C) 2019 Elsevier Ltd. All rights reserved.
机译:基于图像集的分类近来是一种竞争性技术,其中每个集合都包含一个人或物体的多个图像。作为一种广泛使用的模型,仿射船体在建模图像集方面显示了其强大功能。但是,由于存在噪声和异常值,当两个船体重叠时,超大仿射船体通常会失败。为了减轻这种障碍,本文提出了一种新的图像集分类方法,即简化原型学习和局部度量(LRPLM)。具体地,对于每个画廊图像集,同时学习减少的原型集和最优的局部特征量度,这共同最小化了涉及分类误差概率估计的损失函数。这样做,LRPLM继承了仿射船壳的优点,具有更好的表示能力以解决看不见的外观,并利用了本地度量改进的强大判别能力。看起来LRPLM将具有相同类标签“ closer”的相似图像集彼此拉在一起,而将相异图像集“相隔很远”推开。大量实验表明,LRPLM在三个广泛使用的数据集上具有相当大的有效性。众所周知,分类是专家和智能系统的研究热点。与以前的分类方法不同,LRPLM专注于基于图像集的分类技术,而大多数都是单发分类技术。因此,所提出的方法可以被认为是用于医学诊断,安全监控,对象分类和生物识别应用的专家系统技术。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Expert Systems with Application》 |2019年第11期|102-111|共10页
  • 作者单位

    Southwest Univ Sci & Technol, Sch Natl Def Sci & Technol, Mianyang 621010, Sichuan, Peoples R China|Nanjing Univ Sci & Technol, Dept Comp Sci, Nanjing 210094, Jiangsu, Peoples R China;

    Southwest Univ Sci & Technol, Sch Informat Engn, Mianyang 621010, Sichuan, Peoples R China;

    Nanjing Univ Sci & Technol, Dept Comp Sci, Nanjing 210094, Jiangsu, Peoples R China;

    Southwest Univ Sci & Technol, Sch Natl Def Sci & Technol, Mianyang 621010, Sichuan, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Image set classification; Prototype learning; Metric learning; Face recognition; Expert system;

    机译:图像集分类原型学习度量学习人脸识别专家系统;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号