首页> 外文期刊>Image Processing, IET >Improved kernel-based IRIS recognition system in the framework of support vector machine and hidden markov model
【24h】

Improved kernel-based IRIS recognition system in the framework of support vector machine and hidden markov model

机译:支持向量机和隐马尔可夫模型框架下改进的基于核的IRIS识别系统

获取原文
获取原文并翻译 | 示例

摘要

IRIS biometric is one of the most efficient and trusted biometric methods for authenticating users owing to invariance with age or with physical activities. IRIS recognition techniques are broadly categorised in three groups: phase, texture and kernel-based methods, which out of kernel-based methods are proven to be the best suited for IRIS recognition problem. In this work a multiclass kernel Fisher analysis and its consequent feature set for IRIS recognition is proposed. The authors use support vector machine (SVM) classifier to group the large database into smaller groups where each group is linearly separable from the other. Once an image is grouped as one of the groups by SVM, it is classified to be recognised by hidden Markov model (HMM) classifier which compares the features of the given image only with the other images of the same group. Results show 93.2% overall accuracy for the system if we consider seven features and improved to 99.6% when 1200 features are used. In order to meet this efficiency an average convergence time needed by the algorithm is found to be lesser than existing SVM-based technique. Results also show fast convergence time for optimisation process in comparison to with other conventional kernel and SVM-based techniques.
机译:IRIS生物特征识别是由于年龄或身体活动的不变性而对用户进行身份验证的最有效,最受信任的生物特征识别方法之一。 IRIS识别技术大致分为三类:相位,纹理和基于核的方法,事实证明,这些方法是基于核的方法中最适合IRIS识别问题的。在这项工作中,提出了用于IRIS识别的多类内核Fisher分析及其后续功能集。作者使用支持向量机(SVM)分类器将大型数据库分组为较小的组,其中每个组之间可以线性分离。一旦将图像通过SVM分组为一组,它便被分类为由隐马尔可夫模型(HMM)分类器识别,该分类器仅将给定图像的特征与同一组的其他图像进行比较。如果我们考虑七个功能,结果表明系统的整体准确度为93.2%,当使用1200个功能时,则提高到99.6%。为了满足该效率,发现算法所需的平均收敛时间比现有的基于SVM的技术要短。与其他常规内核和基于SVM的技术相比,结果还显示了优化过程的快速收敛时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号