首页> 外文期刊>Image Processing, IET >Multi-dimensional data representation using linear tensor coding
【24h】

Multi-dimensional data representation using linear tensor coding

机译:使用线性张量编码的多维数据表示

获取原文
获取原文并翻译 | 示例

摘要

Linear coding is widely used to concisely represent data sets by discovering basis functions of capturing high-level features. However, the efficient identification of linear codes for representing multi-dimensional data remains very challenging. In this study, the authors address the problem by proposing a linear tensor coding algorithm to represent multi-dimensional data succinctly via a linear combination of tensor-formed bases without data expansion. Motivated by the amalgamation of linear image coding and multi-linear algebra, each basis function in the authors' algorithm captures some specific variabilities. The basis-associated coefficients can be used for data representation, compression and classification. When the authors apply the algorithm on both simulated phantom data and real facial data, the experimental results demonstrate their algorithm not only preserves the original information of input data, but also produces localised bases with concrete physical meanings.
机译:线性编码通过发现捕获高级特征的基本功能而广泛用于简洁地表示数据集。然而,用于表示多维数据的线性代码的有效识别仍然非常具有挑战性。在这项研究中,作者通过提出一种线性张量编码算法来解决该问题,该算法通过张量形成的基数的线性组合简洁地表示多维数据,而无需数据扩展。由于线性图像编码和多线性代数的融合,作者算法中的每个基本函数都捕获了一些特定的可变性。与基础相关的系数可以用于数据表示,压缩和分类。当作者将算法同时应用于模拟体模数据和真实面部数据时,实验结果表明,该算法不仅保留了输入数据的原始信息,而且还产生了具有具体物理意义的局部化基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号