首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Probabilistic Linear Discriminant Analysis With Vectorial Representation for Tensor Data
【24h】

Probabilistic Linear Discriminant Analysis With Vectorial Representation for Tensor Data

机译:张量数据的矢量表示的概率线性判别分析

获取原文
获取原文并翻译 | 示例

摘要

Linear discriminant analysis (LDA) has been a widely used supervised feature extraction and dimension reduction method in pattern recognition and data analysis. However, facing high-order tensor data, the traditional LDA-based methods take two strategies. One is vectorizing original data as the first step. The process of vectorization will destroy the structure of high-order data and result in high dimensionality issue. Another is tensor LDA-based algorithms that extract features from each mode of high order data and the obtained representations are also high-order tensor. This paper proposes a new probabilistic LDA (PLDA) model for tensorial data, namely, tensor PLDA. In this model, each tensorial data are decomposed into three parts: the shared subspace component, the individual subspace component, and the noise part. Furthermore, the first two parts are modeled by a linear combination of latent tensor bases, and the noise component is assumed to follow a multivariate Gaussian distribution. Model learning is conducted through a Bayesian inference process. To further reduce the total number of model parameters, the tensor bases are assumed to have tensor CandeComp/PARAFAC (CP) decomposition. Two types of experiments, data reconstruction and classification, are conducted to evaluate the performance of the proposed model with the convincing result, which is superior or comparable against the existing LDA-based methods.
机译:线性判别分析(LDA)是模式识别和数据分析中广泛使用的监督特征提取和降维方法。但是,面对高阶张量数据,传统的基于LDA的方法采用两种策略。第一步是矢量化原始数据。向量化的过程将破坏高阶数据的结构,并导致高维问题。另一个是基于张量LDA的算法,该算法从高阶数据的每种模式中提取特征,并且获得的表示形式也是高阶张量。本文提出了一种新的张量数据概率LDA(PLDA)模型,即张量PLDA。在该模型中,每个张量数据被分解为三个部分:共享子空间分量,单个子空间分量和噪声部分。此外,前两个部分是通过潜在张量基数的线性组合建模的,并且假设噪声分量遵循多元高斯分布。通过贝叶斯推理过程进行模型学习。为了进一步减少模型参数的总数,假定张量基数具有张量CandeComp / PARAFAC(CP)分解。进行了两种类型的实验,即数据重构和分类,以评估具有令人信服结果的模型的性能,该结果优于或优于现有的基于LDA的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号