首页> 外文期刊>Image Processing, IET >Detection, quantification and classification of ripened tomatoes: a comparative analysis of image processing and machine learning
【24h】

Detection, quantification and classification of ripened tomatoes: a comparative analysis of image processing and machine learning

机译:成熟的西红柿的检测,量化和分类:图像处理和机器学习的比较分析

获取原文
获取原文并翻译 | 示例

摘要

In this study, specifically for the detection of ripe/unripe tomatoes with/without defects in the crop field, two distinct methods are described and compared from captured images by a camera mounted on a mobile robot. One is a machine learning approach, known as 'Cascaded Object Detector' (COD) and the other is a composition of traditional customised methods, individually known as 'Colour Transformation': 'Colour Segmentation' and 'Circular Hough Transformation'. The (Viola-Jones) COD generates 'histogram of oriented gradient' (HOG) features to detect tomatoes. For ripeness checking, the RGB mean is calculated with a set of rules. However, for traditional methods, colour thresholding is applied to detect tomatoes either from natural or solid background and RGB colour is adjusted to identify ripened tomatoes. This algorithm is shown to be optimally feasible for any micro-controller based miniature electronic devices in terms of its run time complexity ofO(n(3)) for a traditional method in best and average cases. Comparisons show that the accuracy of the machine learning method is 95%, better than that of the Colour Segmentation Method using MATLAB.
机译:在本研究中,专门用于在裁剪场中检测与/没有缺陷的成熟/未成熟的西红柿,描述了两个不同的方法,并通过安装在移动机器人上的摄像机与捕获的图像进行比较。一个是一种机器学习方法,称为“级联对象检测器”(COD),另一个是传统定制方法的组成,被单独称为“颜色转换”:“彩色分割”和“圆形跳闸转换”。 (中提琴jones)cod生成“面向梯度”(hog)功能的直方图,以检测西红柿。对于成熟检查,RGB均值用一组规则计算。然而,对于传统方法,颜色阈值处理用于检测来自天然或实心背景的西红柿,并且调整RGB颜色以识别成熟的西红柿。在最佳和平均案例中,在其运行时间复杂度(N(3))的运行时间复杂度方面,该算法对于任何微控制器基于微控制器的微型电子设备是最佳的。比较表明,机器学习方法的准确性为95%,比使用MATLAB的颜色分割方法更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号