首页> 外文期刊>Image Processing, IET >CPGAN: Conditional patch-based generative adversarial network for retinal vessel segmentation
【24h】

CPGAN: Conditional patch-based generative adversarial network for retinal vessel segmentation

机译:CPGON:视网膜分割的条件贴剂基生成的对抗网络

获取原文
获取原文并翻译 | 示例

摘要

Retinal blood vessels, the diagnostic bio-marker of ophthalmologic and diabetic retinopathy, utilise thick and thin vessels for diagnostic and monitoring purposes. The existing deep learning methods attempt to segment the retinal vessels using a unified loss function. However, a difference in spatial features of thick and thin vessels and a biased distribution creates an imbalanced thickness, rendering the unified loss function to be useful only for thick vessels. To address this challenge, a patch-based generative adversarial network-based technique is proposed which iteratively learns both thick and thin vessels in fundoscopic images. It introduces an additional loss function that allows the generator network to learn thin and thick vessels, while the discriminator network assists in segmenting out both vessels as a combined objective function. Compared with state-of-the-art techniques, the proposed model demonstrates the enhanced accuracy, sensitivity, specificity, and area under the receiver operating characteristic curves on STARE, DRIVE, and CHASEDB1 datasets.
机译:视网膜血管,眼科和糖尿病视网膜病变的诊断生物标记,利用厚和薄血管进行诊断和监测目的。现有的深度学习方法试图使用统一的损失函数进行视网膜血管。然而,厚血管和偏置分布的空间特征的差异产生了不平衡的厚度,使统一的损耗函数仅用于厚血管。为了解决这一挑战,提出了一种基于补丁的生成的对抗基于网络技术,该技术迭代地学习基础图像中的厚血管。它引入了允许发电机网络学习薄和厚血管的额外损耗功能,而鉴别器网络有助于将两个血管分段为组合的目标函数。与最先进的技术相比,所提出的模型展示了在凝视,驱动器和ChasedB1数据集上的接收器操作特性曲线下的增强的准确性,灵敏度,特异性和面积。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号