首页> 外文期刊>Image Processing, IET >Context-based ensemble classification for the detection of architectural distortion in a digitised mammogram
【24h】

Context-based ensemble classification for the detection of architectural distortion in a digitised mammogram

机译:基于上下文的集合分类,用于检测数字化乳房X线图中的架构失真

获取原文
获取原文并翻译 | 示例

摘要

The problem of computer-aided detection of architectural distortion (AD) in a digitised mammogram has been attempted in this manuscript. In examining a mammogram, the decision regarding a particular region of interest (RoI) is dependent on the appearance of the surrounding regions. However, in existing methods to detect AD the inference about an RoI is dependent on the appearance of this RoI alone. In addition, multiple radiologists infer the same mammogram in coming to a final decision about the mammogram. Contrary to popular ensemble classifiers like Adaboost and Random Forest, the authors propose an ensemble based method (imitating multiple radiologists by classifiers) for detecting AD such that the decision on a test RoI is dependent on the decisions of the surrounding RoIs in the proposed ensemble classifier. The proposed context-based ensemble classifier has been validated on two mammographic databases. The proposal shows promising results in both the databases.
机译:在该稿件中尝试了在数字化乳房X线图中的计算机辅助检测架构失真(AD)的问题。在检查乳房X线照片时,关于感兴趣区域(ROI)的决定取决于周围区域的外观。然而,在现有的方法中检测到关于ROI的推断的推断取决于单独的ROI的外观。此外,多种放射科医生推断出相同的乳房X线照片来到乳房X光检查的最终决定。与adaboost和随机森林等流行的集合分类器相反,作者提出了一种基于集合的方法(通过分类器模仿多个放射科医生)来检测广告,以检测测试ROI的决定取决于所提出的集合分类器中的周围ROI的决定。所提出的基于上下文的集合分类器已在两个乳房数据库上验证。该提案显示有希望在数据库中产生的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号