首页> 外文期刊>Image Processing, IET >Image retrieval based on ASIFT features in a Hadoop clustered system
【24h】

Image retrieval based on ASIFT features in a Hadoop clustered system

机译:Hadoop集群系统中基于ASIFT功能的图像检索

获取原文
获取原文并翻译 | 示例

摘要

For image matching, the scale invariant feature transform (SIFT) algorithm is a commonly used one. They are invariant to image rotation, scale zooming, and partially invariant to change in illumination and 3D camera viewpoint. Affine SIFT (ASIFT) is an extension of SIFT, which solves the problem when images are captured at different angles. However, ASIFT has higher computational complexity than SIFT, due to a huge amount of features in the images. Therefore, in this study, a Hadoop-based image retrieval system is proposed to solve the ASIFT shortcomings of high computation by the MapReduce technology. The system uses a combination of the Bag-of-Words method and support vector machine. Finally, the experimental results verify that the proposed method is more effective than the other state-of-the-art methods for a variety of datasets.
机译:对于图像匹配,尺度不变特征变换(SIFT)算法是一种常用的算法。它们对图像旋转,缩放比例不变,而对照明和3D摄像机视点的变化则部分不变。仿射SIFT(ASIFT)是SIFT的扩展,解决了当以不同角度捕获图像时的问题。但是,由于图像中具有大量特征,因此ASIFT的计算复杂度高于SIFT。因此,在本研究中,提出了一种基于Hadoop的图像检索系统,以解决MapReduce技术在ASIFT计算上的不足。该系统结合了词袋方法和支持向量机。最后,实验结果证明,对于各种数据集,该方法比其他最新方法更有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号