首页> 外文期刊>Image Processing, IET >Integrating Taylor–Krill herd-based SVM to fuzzy-based adaptive filter for medical image denoising
【24h】

Integrating Taylor–Krill herd-based SVM to fuzzy-based adaptive filter for medical image denoising

机译:将基于Taylor-Krill牧群的SVM与基于模糊的自适应滤波器相集成,以进行医学图像降噪

获取原文
获取原文并翻译 | 示例

摘要

Medical imaging systems contribute much towards effective decision-making by the physicians, which is highly essential in the day-to-day life of humans. In this study, Taylor-Krill herd (KH)-based support vector machine (SVM) is proposed for medical image denoising. The Taylor-KH-based SVM is the integration of Taylor series in KH optimisation algorithm, which is used for tuning the optimal weights of the SVM classifier. The efficiency of KH is due to two global and two local optimisers, and the adaptive operators ensure the adaptive nature of KH. Above all, KH never uses the derivative information as it employs the stochastic search and thereby, reduces the complexity of the algorithm. The proposed method tunes the hyperplane parameters of SVM optimally so that the optimal identification of the noisy pixels in the image is ensured and replaced with adaptive weights. The proposed method is analysed based on the metrics, such as peak signal-to-noise ratio (PSNR), structural similarity (SSIM) and the comparative analysis is done with existing methods for showing the effectiveness of the proposed method. The simulation result shows that the proposed method acquired a PSNR of 30.36 dB and SSIM of 0.89, respectively.
机译:医学成像系统对医生的有效决策做出了很大贡献,这对于人类的日常生活至关重要。在这项研究中,基于Taylor-Krill牛群(KH)的支持向量机(SVM)被提出用于医学图像去噪。基于Taylor-KH的SVM是Taylor系列在KH优化算法中的集成,用于调整SVM分类器的最佳权重。 KH的效率取决于两个全局优化器和两个局部优化器,而自适应算子可确保KH的自适应性。最重要的是,KH从未使用导数信息,因为它采用了随机搜索,从而降低了算法的复杂性。所提出的方法优化了支持向量机的超平面参数,从而确保了图像中噪声像素的最佳识别,并被自适应权重取代。基于峰值信噪比(PSNR),结构相似度(SSIM)等指标对提出的方法进行了分析,并与现有方法进行了比较分析,以证明该方法的有效性。仿真结果表明,该方法的PSNR为30.36 dB,SSIM为0.89。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号