首页> 外文期刊>Image Processing, IET >Visual tracking with tree-structured appearance model for online learning
【24h】

Visual tracking with tree-structured appearance model for online learning

机译:具有树状外观模型的视觉跟踪,用于在线学习

获取原文
获取原文并翻译 | 示例

摘要

Deep learning has been widely used in many visual recognition tasks owing to its powerful representation ability. However, online learning is a bottleneck to obstruct the application of deep learning in visual tracking. Although many algorithms have discarded the process of online learning during tracking, they demonstrate poor robustness to the online adaptation to appearance changes of the target. In this study, the authors design a tree structure specifically for online learning, which enables the appearance model to be updated smoothly. Once the target appearance has changed severely, a new branch is generated to avoid the fuzzy boundary of classification. In addition, active learning technique and artificial data are employed in the update to make the best of the limited knowledge about the interesting object during the tracking process. The proposed algorithm is evaluated on OTB2013 and VOT2017 benchmark and outperforms many state-of-the-art methods.
机译:深度学习由于其强大的表示能力已被广泛用于许多视觉识别任务中。但是,在线学习是阻碍深度学习在视觉跟踪中应用的瓶颈。尽管许多算法在跟踪过程中都放弃了在线学习的过程,但是它们表现出对目标外观变化进行在线适应的鲁棒性。在这项研究中,作者设计了专门用于在线学习的树形结构,这使得外观模型可以平滑更新。一旦目标外观发生了重大变化,就会生成一个新的分支以避免分类的模糊边界。此外,在更新过程中采用了主动学习技术和人工数据,以在跟踪过程中充分利用有关有趣物体的有限知识。该算法在OTB2013和VOT2017基准上进行了评估,性能优于许多最新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号