首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Robust online appearance models for visual tracking
【24h】

Robust online appearance models for visual tracking

机译:强大的在线外观模型,用于视觉跟踪

获取原文
获取原文并翻译 | 示例

摘要

We propose a framework for learning robust, adaptive, appearance models to be used for motion-based tracking of natural objects. The model adapts to slowly changing appearance, and it maintains a natural measure of the stability of the observed image structure during tracking. By identifying stable properties of appearance, we can weight them more heavily for motion estimation, while less stable properties can be proportionately downweighted. The appearance model involves a mixture of stable image structure, learned over long time courses, along with two-frame motion information and an outlier process. An online EM-algorithm is used to adapt the appearance model parameters over time. An implementation of this approach is developed for an appearance model based on the filter responses from a steerable pyramid. This model is used in a motion-based tracking algorithm to provide robustness in the face of image outliers, such as those caused by occlusions, while adapting to natural changes in appearance such as those due to facial expressions or variations in 3D pose.
机译:我们提出了一个学习健壮的,自适应的外观模型的框架,该模型可用于基于运动的自然物体跟踪。该模型适应缓慢变化的外观,并且在跟踪过程中保持了对观察到的图像结构稳定性的自然度量。通过识别外观的稳定属性,我们可以对它们进行加权以进行运动估计,而不稳定的属性可以按比例降低。外观模型包括稳定的图像结构,经过长时间学习而获得的信息,两帧运动信息和异常过程。在线EM算法用于随时间调整外观模型参数。基于来自可控金字塔的滤波器响应,为外观模型开发了此方法的实现。该模型用于基于运动的跟踪算法中,可在面对图像异常值(例如由遮挡引起的异常)时提供鲁棒性,同时适应外观的自然变化(如由于面部表情或3D姿势变化引起的变化)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号