首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Robust Object Tracking Via Online Dynamic Spatial Bias Appearance Models
【24h】

Robust Object Tracking Via Online Dynamic Spatial Bias Appearance Models

机译:通过在线动态空间偏差外观模型进行稳健的对象跟踪

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a robust object tracking method via a spatial bias appearance model learned dynamically in video. Motivated by the attention shifting among local regions of a human vision system during object tracking, we propose to partition an object into regions with difierent confidences and track the object using a dynamic spatial bias appearance model (DSBAM) estimated from region confidences. The confidence of a region is estimated to re ect the discriminative power of the region in a feature space, and the probability of occlusion. We propose a novel hierarchical Monte Carlo (HAMC) algorithm to learn region confidences dynamically in every frame. The algorithm consists of two levels of Monte Carlo processes implemented using two particle filtering procedures at each level and can effciently extract high confidence regions through video frames by exploiting the temporal consistency of region confidences. A dynamic spatial bias map is then generated from the high confidence regions, and is employed to adapt the appearance model of the object and to guide a tracking algorithm in searching for correspondences in adjacent frames of video images. We demonstrate feasibility of the proposed method in video surveillance applications. The proposed method can be combined with many other existing tracking systems to enhance the robustness of these systems.
机译:本文通过在视频中动态学习的空间偏差外观模型,提出了一种鲁棒的对象跟踪方法。出于在对象跟踪过程中人类视觉系统局部区域之间注意力转移的动机,我们建议将对象划分为具有不同置信度的区域,并使用根据区域置信度估算的动态空间偏差外观模型(DSBAM)跟踪对象。估计区域的置信度以反映该区域在特征空间中的判别力以及遮挡的可能性。我们提出了一种新颖的分层蒙特卡洛(HAMC)算法,以在每个帧中动态学习区域置信度。该算法由两个级别的蒙特卡洛过程组成,每个级别使用两个粒子滤波过程实现,并且可以通过利用区域置信度的时间一致性有效地通过视频帧提取高置信度区域。然后,从高置信度区域生成动态空间偏差图,并将其用于调整对象的外观模型并指导跟踪算法在视频图像的相邻帧中搜索对应关系。我们证明了该方法在视频监控应用中的可行性。所提出的方法可以与许多其他现有的跟踪系统结合以增强这些系统的鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号