首页> 外文期刊>Circuits and Systems for Video Technology, IEEE Transactions on >Online Appearance Model Learning and Generation for Adaptive Visual Tracking
【24h】

Online Appearance Model Learning and Generation for Adaptive Visual Tracking

机译:自适应视觉跟踪的在线外观模型学习和生成

获取原文
获取原文并翻译 | 示例

摘要

Several adaptive visual tracking algorithms have been recently proposed to capture the varying appearance of target. However, adaptability may also result in the problem of gradual drift, especially when the target appearance changes drastically. This paper gives some theoretical principles for online learning of target model, and then presents a novel adaptive tracking algorithm which is able to effectively cope with drastic variations in target appearance and resist gradual drift. Once target is localized in each frame, the patches sampled from target observation are first classified into foreground and background using an effective classifier. Then the adaptive, pure and time-continuous target model is extracted online through two processes: absorption process and rejection process, through which only the reliable features with high separability are absorbed in the new target model, while the “dangerous” features which may cause interfusion of background patterns are rejected. To minimize the influence of background and keep the temporal continuity of target model, two collaborative models dominant model and continuous model are designed. The proposed learning and generation mechanisms of target model are finally embedded in an adaptive tracking system. Experimental results demonstrate the robust performance of the proposed algorithm under challenging conditions.
机译:最近已经提出了几种自适应视觉跟踪算法来捕获目标的变化外观。但是,适应性也可能导致逐渐漂移的问题,特别是当目标外观急剧变化时。本文给出了目标模型在线学习的一些理论原理,然后提出了一种新颖的自适应跟踪算法,该算法能够有效地应对目标外观的剧烈变化并抵抗逐渐的漂移。一旦在每个帧中定位了目标,就首先使用有效的分类器将从目标观察中采样的斑块分类为前景和背景。然后通过两个过程在线提取自适应,纯净且时间连续的目标模型:吸收过程和拒绝过程,通过这些过程,只有具有高可分离性的可靠特征才被吸收到新的目标模型中,而“危险”特征可能会导致拒绝混入背景图案。为了最小化背景的影响并保持目标模型的时间连续性,设计了两个协作模型,主导模型和连续模型。最终将提出的目标模型的学习和生成机制嵌入到自适应跟踪系统中。实验结果证明了该算法在挑战性条件下的鲁棒性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号