首页> 外文期刊>Image Processing, IET >Robust face anti-spoofing using CNN with LBP and WLD
【24h】

Robust face anti-spoofing using CNN with LBP and WLD

机译:使用带有LBP和WLD的CNN进行鲁棒的面部反欺骗

获取原文
获取原文并翻译 | 示例

摘要

Automatically recognising people by their biometric characteristics is a well-established research area. Biometric systems are vulnerable to many different types of presentation attacks made by persons showing photo, video, or mask to spoof the real identity. This study introduces a novel approach to detect face-spoofing, by extracting the local features local binary pattern (LBP) and simplified weber local descriptor (SWLD) encoded convolutional neural network (CNN) models, WLD and LBP features are combined together to ensure the preservation of the local intensity information and the orientations of the edges. These two components are complementary to each other. Specifically, differential excitation preserves the local intensity information but omits the orientations of edges. On the contrary, LBP describes the orientations of the edges but ignore the intensity information, the proposed approach presents a very low degree of complexity which makes it suitable for real-time applications, Finally, a non-linear support vector machine (SVM) classifier with kernel function was used for determining whether the input image corresponds to a live face or not. Authors' experimental analysis on two publicly available databases REPLAY-ATTACK and CASIA face anti-spoofing showed that their approach performs better than state-of-the-art techniques following the provided evaluation protocols of each database.
机译:通过生物特征自动识别人是一个完善的研究领域。生物识别系统很容易受到显示照片,视频或面具以欺骗真实身份的人员所进行的许多不同类型的呈现攻击的攻击。这项研究通过提取局部特征局部二进制模式(LBP)和简化的Weber局部描述符(SWLD)编码卷积神经网络(CNN)模型,介绍了一种检测面部欺骗的新方法,将WLD和LBP特征组合在一起以确保保留局部强度信息和边缘的方向。这两个组成部分是互补的。具体而言,差分激励保留了局部强度信息,但忽略了边缘的方向。相反,LBP描述了边缘的方向,但是忽略了强度信息,所提出的方法呈现出非常低的复杂度,使其适合于实时应用。最后,非线性支持向量机(SVM)分类器具有核函数的函数用于确定输入图像是否对应于实时图像。作者对两个可公开使用的数据库REPLAY-ATTACK和CASIA进行反欺骗的实验分析表明,按照每个数据库提供的评估协议,它们的方法比最先进的技术性能更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号