首页> 外文期刊>Computer vision and image understanding >Adversarial examples for replay attacks against CNN-based face recognition with anti-spoofing capability
【24h】

Adversarial examples for replay attacks against CNN-based face recognition with anti-spoofing capability

机译:对基于CNN的面部识别的反馈攻击攻击示例,具有防欺骗能力

获取原文
获取原文并翻译 | 示例

摘要

In the race of arms between attackers, trying to build more and more realistic face replay attacks, and defenders, deploying spoof detection modules with ever-increasing capabilities, CNN-based methods have shown outstanding detection performance thus raising the bar for the construction of realistic replay attacks against face-based authentication systems. Rather than trying to rebroadcast even more realistic faces, we show that attackers can successfully fool a face authentication system equipped with a deep learning spoof detection module, by exploiting the vulnerabilities of CNNs to adversarial perturbations. We first show that mounting such an attack is not a trivial task due to the unique features of spoofing detection modules. Then, we propose a method to craft adversarial images that can be successfully exploited to build an effective replay attack. Experiments conducted on the REPLAY-MOBILE database demonstrate that our attacked images achieve good performance against a face recognition system equipped with CNN-based anti-spoofing, in that they are able to pass the face detection, spoof detection and face recognition modules of the authentication chain.
机译:在攻击者之间的武器比赛中,试图建立越来越逼真的脸部重播攻击和防守者,通过不断增长的能力部署欺骗检测模块,基于CNN的方法显示出出色的检测性能,从而升高了栏杆以建造现实的栏重放攻击对基于面部的身份验证系统。我们展示攻击者可以通过利用CNNS对抗对抗扰动的脆弱性,攻击者成功地欺骗了配备深层学习欺骗检测模块的脸部认证系统。我们首先表明,由于欺骗检测模块的独特功能,安装这种攻击不是一个微不足道的任务。然后,我们提出了一种方法来实现可以成功利用以构建有效的重播攻击的对抗性图像。在重播 - 移动数据库上进行的实验表明,我们的攻击图像对配备基于CNN的防欺骗的人脸识别系统来实现良好的性能,因为它们能够通过面部检测,欺骗检测和面部识别模块的认证链。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号