首页> 外文期刊>Image Processing, IET >Robust lane-detection algorithm based on improved symmetrical local threshold for feature extraction and inverse perspective mapping
【24h】

Robust lane-detection algorithm based on improved symmetrical local threshold for feature extraction and inverse perspective mapping

机译:基于改进的对称局部阈值的鲁棒车道检测算法用于特征提取和反透视映射

获取原文
获取原文并翻译 | 示例

摘要

Here, an extended version of the symmetrical local threshold (SLT) algorithm is introduced for lane feature extraction and used in a novel lane-detection system. The introduced feature map extractor utilises parallel lane border features as well as the dark-light-dark (DLD) pattern of the lane marking used in SLT. Hence, compared to the SLT, the true positive to positive rate of the calculated feature maps is increased from 69% to 86% on the ROMA dataset. In addition, the proposed algorithm supplies orientation information for the estimated feature points, which can be useful for many optimisation algorithms. Consequently, based on the estimated lane feature orientations, a global lane orientation is calculated and used for both enhancing the feature map and estimating a one-dimensional (1D) lateral offset likelihood function. Then, the estimated 1D functions are filtered temporally and up to two linear lane candidates are detected. For increased flexibility, robust fitting is applied to the feature points in the region of interest (ROI). Finally, based on the detection of the previous frame, a mask is created and applied to the next frame. When tested on 2301 road images, mean error in lateral offset is calculated as 4.1 pixel on the IPM images.
机译:在这里,引入了对称局部阈值(SLT)算法的扩展版本,用于车道特征提取,并在新型车道检测系统中使用。引入的特征图提取器利用了平行车道边界特征以及SLT中使用的车道标记的暗/暗(DLD)模式。因此,与SLT相比,在ROMA数据集上,计算出的特征图的真实正向阳性率从69%增加到86%。另外,所提出的算法为估计的特征点提供了方向信息,这对于许多优化算法很有用。因此,基于估计的车道特征方位,计算全局车道方位并将其用于增强特征图和估算一维(1D)横向偏移似然函数。然后,对估计的一维函数进行时间滤波,并最多检测两个线性车道候选。为了提高灵活性,将鲁棒拟合应用于感兴趣区域(ROI)中的特征点。最后,基于对前一帧的检测,将创建遮罩并将其应用于下一帧。在2301张道路图像上进行测试时,在IPM图像上,横向偏移的平均误差计算为4.1像素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号