首页> 外文期刊>Image Processing, IET >Local difference-based active contour model for medical image segmentation and bias correction
【24h】

Local difference-based active contour model for medical image segmentation and bias correction

机译:基于局部差异的主动轮廓模型用于医学图像分割和偏差校正

获取原文
获取原文并翻译 | 示例

摘要

This study proposes a local bias field and difference estimation (LBDE) model for medical image segmentation and bias field correction. Firstly, the LBDE model uses a linear combination of a given set of smooth orthogonal basis functions, which is called Chebyshev polynomial, to estimate the bias field. Then, a clustering criterion function is defined by considering the difference between the measured image and approximated image in a small region. By applying this difference in the local region, the LBDE model can obtain accurate segmentation results and estimation of the bias field. Finally, the energy functional is incorporated into a level set formulation with a regularisation term, and it is minimised via the level set evolution process. The LBDE model first appears as a two-phase model and then extends to the multi-phase one. Extensive experiments on medical images demonstrate that the LBDE model achieves more precise segmentation results in terms of Jaccard similarity and dice similarity coefficient than the comparative models. Therefore the proposed model can increase the segmentation accuracy and robustness to noise.
机译:这项研究提出了用于医学图像分割和偏差场校正的局部偏差场和差异估计(LBDE)模型。首先,LBDE模型使用一组给定的光滑正交基函数的线性组合(称为Chebyshev多项式)来估计偏置场。然后,通过考虑小区域中测量图像和近似图像之间的差异来定义聚类标准函数。通过在局部区域应用此差异,LBDE模型可以获得准确的分割结果和偏置场的估计。最后,将能量泛函包含在具有正则项的水平集公式中,并通过水平集演化过程将其最小化。 LBDE模型首先显示为两阶段模型,然后扩展为多阶段模型。在医学图像上的大量实验表明,与比较模型相比,LBDE模型在Jaccard相似度和骰子相似度系数方面实现了更精确的分割结果。因此,提出的模型可以提高分割精度和对噪声的鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号