首页> 外文期刊>Image Processing, IET >Fractional crow search-based support vector neural network for patient classification and severity analysis of tuberculosis
【24h】

Fractional crow search-based support vector neural network for patient classification and severity analysis of tuberculosis

机译:基于分数乌鸦搜索的支持向量神经网络,用于结核病的患者分类和严重性分析

获取原文
获取原文并翻译 | 示例

摘要

The world is chasing towards the automation in the severity analysis and classification of the patients based on the severity of tuberculosis (TB). The automatic classification is very much useful for developing countries that are struggling to reduce the fatality rate of the persons suffering from TB as it is a top standing infectious disease. Thus, the automatic classification of the TB patients using the sputum images with the proposed fractional crow search-based support vector neural network is presented. The proposed classification method is the integration of the fractional theory in the crow search algorithm that increases the computational speed and reduces the cost and time spent on analysing the test samples. The importance of the proposed method is that it requires minimum manual power and hence, the inaccuracies are reduced. The experimentation performed using the Ziehl–Neelsen sputum smear microscopy image database proves that the proposed classifier is highly accurate and offered an improved performance in terms of accuracy rate, true positive rate, and false-positive rate.
机译:世界正在朝着基于结核病(TB)严重程度的患者严重程度分析和分类进行自动化。对于正在努力减少结核病患者的致死率的发展中国家来说,自动分类非常有用,因为它是最主要的传染病。因此,提出了利用痰液图像对肺结核患者的自动分类,并提出了基于分数乌鸦搜索的支持向量神经网络。提出的分类方法是将分数理论整合到乌鸦搜索算法中,从而提高了计算速度,并减少了在分析测试样本上的成本和时间。所提出的方法的重要性在于它需要最小的手动功率,因此减少了不准确性。使用Ziehl-Neelsen痰涂片显微镜图像数据库进行的实验证明,所提出的分类器具有很高的准确性,并且在准确率,真实阳性率和假阳性率方面提供了改进的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号