首页> 外文期刊>Image Processing, IET >Hyperspectral image clustering via sparse dictionary-based anchored regression
【24h】

Hyperspectral image clustering via sparse dictionary-based anchored regression

机译:通过基于稀疏字典的锚定回归进行高光谱图像聚类

获取原文
获取原文并翻译 | 示例

摘要

Clustering for hyperspectral images (HSIs) is a very challenging task because HSIs usually have large spectral variability, high dimensionality, and complex structures. The main issue of this study is to develop an improved sparse subspace clustering (SSC) method for HSIs. As an extension of spectral clustering, SSC algorithm has achieved great success; however, the direct self-representation dictionary which is created by raw samples has poor representation power and also the widely used dictionary learning (DL) such as K-Singular Value Decomposition (K-SVD) faces with the problems of high computational complexity. In this study, the authors propose a novel HSI clustering method based on sparse DL and anchored regression. The proposed method follows three stages: (i) sparse DL; (ii) anchored subspace construction and regression; and (iii) representation-based spectral clustering. Specifically, we adopt a fast sparse DL method under a double sparsity constrained optimising model to capture the intrinsic HSIs. To establish a compact subspace for collaborative representation, we present an anchored subspace construction method by using atoms clustering and grouping methods. Owing to the anchored subspace, we can fast compute the representation coefficients with a predefined projection matrix. Experimental results demonstrate that the proposed method achieves the best performance for the HSIs clustering.
机译:高光谱图像(HSI)的聚类是一项非常具有挑战性的任务,因为HSI通常具有较大的光谱变异性,高维数和复杂的结构。这项研究的主要问题是为HSI开发一种改进的稀疏子空间聚类(SSC)方法。作为谱聚类的扩展,SSC算法取得了巨大的成功。然而,由原始样本创建的直接自我表示字典的表示能力较弱,而且诸如K奇异值分解(K-SVD)之类的广泛使用的字典学习(DL)面临着计算复杂性高的问题。在这项研究中,作者提出了一种基于稀疏DL和锚定回归的新型HSI聚类方法。所提出的方法分为三个阶段:(i)稀疏DL; (ii)锚定子空间的构建和回归; (iii)基于表示的频谱聚类。具体来说,我们在双稀疏约束优化模型下采用快速稀疏DL方法来捕获固有的HSI。为了建立用于协作表示的紧凑子空间,我们提出了一种使用原子聚类和分组方法的锚定子空间构造方法。由于锚定的子空间,我们可以使用预定义的投影矩阵快速计算表示系数。实验结果表明,该方法在HSI聚类中达到了最佳性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号