机译:通过基于稀疏字典的锚定回归进行高光谱图像聚类
Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing, Jiangsu, Peoples R China;
Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing, Jiangsu, Peoples R China;
image representation; hyperspectral imaging; pattern clustering; optimisation; matrix algebra; learning (artificial intelligence); sparse dictionary-based anchored regression; hyperspectral images; spectral variability; high dimensionality; complex structures; improved sparse subspace clustering method; SSC algorithm; nature images; low-dimensional data; direct self-representation dictionary; poor representation power; high computational complexity; representation-based spectral clustering; fast sparse DL method; intrinsic hyperspectral signatures; compact subspace; collaborative representation; anchored subspace construction method; hyperspectral data sets; HSIs clustering task;
机译:基于字典的聚类稀疏表示,用于高光谱图像分类
机译:基于字典的稀疏表示的高光谱图像分类
机译:联合稀疏约束的半监督稀疏子空间聚类方法
机译:基于字典的高光谱图像分类的分层稀疏表示
机译:具有精确聚类的稀疏回归
机译:基于局部信息维护的稀疏谱聚类用于高光谱图像分类
机译:基于地标的大型稀疏子空间聚类方法,用于高光谱图像
机译:高光谱图像多聚类算法的鲁棒性