首页> 外文期刊>Image Processing, IET >Comparison of level set models in image segmentation
【24h】

Comparison of level set models in image segmentation

机译:水平集模型在图像分割中的比较

获取原文
获取原文并翻译 | 示例

摘要

Image segmentation is one of the most important tasks in modern imaging applications, which leads to shape reconstruction, volume estimation, object detection and classification. One of the most popular active segmentation models is level set models which are used extensively as an important category of modern image segmentation technique with many different available models to tackle different image applications. Level sets are designed to overcome the topology problems during the evolution of curves in their process of segmentation while the previous algorithms cannot deal with this problem effectively. As a result, there is often considerable investigation into the performance of several level set models for a given segmentation problem. It would therefore be helpful to know the characteristics of a range of level set models before applying to a given segmentation problem. In this study, the authors review a range of level set models and their application to image segmentation work and explain in detail their properties for practical use.
机译:图像分割是现代成像应用中最重要的任务之一,它导致形状重建,体积估计,物体检测和分类。水平集模型是最流行的主动分割模型之一,它被广泛用作现代图像分割技术的重要类别,它具有许多可用的模型来处理不同的图像应用。水平集的设计目的是在分割过程中克服曲线演化过程中的拓扑问题,而先前的算法无法有效地解决此问题。结果,对于给定的分割问题,通常需要对几个级别集模型的性能进行大量研究。因此,在应用于给定的分割问题之前,了解一系列水平集模型的特征将是有帮助的。在这项研究中,作者回顾了一系列水平集模型及其在图像分割工作中的应用,并详细说明了其属性以供实际使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号