首页> 外文期刊>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences >Adaptive Stochastic Collocation Method For Parameterized Statistical Timing Analysis With Quadratic Delay Model
【24h】

Adaptive Stochastic Collocation Method For Parameterized Statistical Timing Analysis With Quadratic Delay Model

机译:二次延迟模型的参数化统计时序分析的自适应随机配置方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose an Adaptive Stochastic Collocation Method for block-based Statistical Static Timing Analysis (SSTA). A novel adaptive method is proposed to perform SSTA with delays of gates and interconnects modeled by quadratic polynomials based on Homogeneous Chaos expansion. In order to approximate the key atomic operator MAX in the full random space during timing analysis, the proposed method adaptively chooses the optimal algorithm from a set of stochastic collocation methods by considering different input conditions. Compared with the existing stochastic collocation methods, including the one using dimension reduction technique and the one using Sparse Grid technique, the proposed method has 10x improvements in the accuracy while using the same order of computation time. The proposed algorithm also shows great improvement in accuracy compared with a moment matching method. Compared with the 10,000 Monte Carlo simulations on 1SCAS85 benchmark circuits, the results of the proposed method show less than 1 % error in the mean and variance, and nearly 100x speeds up.
机译:在本文中,我们提出了一种基于块的统计静态时序分析(SSTA)的自适应随机配置方法。提出了一种新的自适应方法,该方法可以在均质混沌扩展的基础上,通过二次多项式建模,对具有门和延迟的门和互连进行延迟。为了在时序分析过程中逼近整个随机空间中的关键原子算子MAX,该方法通过考虑不同的输入条件,从一组随机配置方法中自适应地选择最佳算法。与现有的随机配置方法(包括一种使用降维技术和一种使用稀疏网格技术)相比,该方法在使用相同顺序的计算时间的情况下,其精度提高了10倍。与矩匹配法相比,该算法在精度上也有很大的提高。与在1SCAS85基准电路上进行的10,000个Monte Carlo仿真相比,该方法的结果表明均值和方差的误差小于1%,并且速度提高了近100倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号