首页> 外文期刊>IEICE Transactions on fundamentals of electronics, communications & computer sciences >Algorithms to Solve Massively Under-Defined Systems of Multivariate Quadratic Equations
【24h】

Algorithms to Solve Massively Under-Defined Systems of Multivariate Quadratic Equations

机译:求解多元二次方程组的大规模欠定义系统的算法

获取原文
获取原文并翻译 | 示例

摘要

It is well known that the problem to solve a set of randomly chosen multivariate quadratic equations over a finite field is NP-hard. However, when the number of variables is much larger than the number of equations, it is not necessarily difficult to solve equations. In fact, when n ≥ m(m + 1) (n, m are the numbers of variables and equations respectively) and the field is of even characteristic, there is an algorithm to find one of solutions of equations in polynomial time (see [Kipnis et al., Eurocrypt'99] and also [Courtois et al., PKC'02]). In the present paper, we propose two new algorithms to find one of solutions of quadratic equations; one is for the case of n ≥ (about)m~2 - 2m~(3/2) + 2m and the other is for the case of n > m(m + l)/2 + 1. The first one finds one of solutions of equations over any finite field in polynomial time, and the second does with O(2~m) or O(3~m) operations. As an application, we also propose an attack to UOV with the parameters given in 2003.
机译:众所周知,在有限域上求解一组随机选择的二次方程组的问题是NP难的。但是,当变量的数量远大于方程式的数量时,求解方程式并不一定困难。实际上,当n≥m(m +1)(n,m分别是变量和方程的数量)并且该字段具有偶数特征时,有一种算法可以找到多项式时间内方程的解之一(请参阅[ Kipnis等人,Eurocrypt,99;以及[Courtois等人,PKC,02]。在本文中,我们提出了两种新算法来找到二次方程的解之一:一个用于n≥(m)〜2-2m〜(3/2)+ 2m的情况,另一个用于n> m(m +1)/ 2 + 1的情况。第一个找到一个多项式时间内任何有限域上方程的解,第二个是用O(2〜m)或O(3〜m)运算完成的。作为应用程序,我们还建议使用2003年给出的参数对UOV进行攻击。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号