首页> 外文期刊>電子情報通信学会技術研究報告 >Designing Quantum Game Strategies from Quantum Communication Protocols
【24h】

Designing Quantum Game Strategies from Quantum Communication Protocols

机译:从量子通信协议设计量子博弈策略

获取原文
获取原文并翻译 | 示例

摘要

In their recent paper, Cleve , Slofstra, Unger and Upadhyay showed that the CHSH~(⊕n), a natural extension of the CHSH game to the one with a scalable input, has an optimal worst-case winning probability of 1/2 + 0.5(1/(2~n)~(1/2)). Their game strategy is a simple parallelization of the original CHSH and needs n pairs of qubits for shared entanglement. In this paper, we present a new strategy whose worst-case winning probability is 1/2 + 0.46(1/(2~n)~(1/2)), a bit worse than theirs, but it needs only a single pair of qubits for shared entanglement. This is done by a nontrivial application of another recent result by Ambainis, Leung, Mancinska and Ozols about the (n, 1) quantum random access coding. We generalize this approach, namely we give a general conversion rule from a two-party quantum communication protocol with communication complexity one into a strategy for an XOR game with a single pair of entangled qubits. This enables us to design two more new strategies that also need minimum entanglement for CHSH~(⊕n).
机译:Cleve,Slofstra,Unger和Upadhyay在他们最近的论文中指出,CHSH〜(⊕n)是CHSH游戏自然扩展到具有可伸缩输入的游戏,其最坏情况下的获胜概率为1/2 + 0.5(1 /(2〜n)〜(1/2))。他们的游戏策略是对原始CHSH的简单并行化,并且需要n对量子位来共享纠缠。在本文中,我们提出了一种新策略,其最坏情况下的获胜概率为1/2 + 0.46(1 /(2〜n)〜(1/2)),比他们的策略差一些,但只需要一对共享纠缠的量子位。这是通过简单地应用Ambainis,Leung,Mancinska和Ozols关于(n,1)量子随机访问编码的另一项最新结果来完成的。我们对这种方法进行了概括,即将通用的转换规则从具有通信复杂性的两方量子通信协议转换为具有一对纠缠量子位的XOR游戏的策略。这使我们能够设计另外两个也需要CHSH〜(⊕n)最小纠缠的新策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号