首页> 外文期刊>IEEE transactions on visualization and computer graphics >HeteroFusion: Dense Scene Reconstruction Integrating Multi-Sensors
【24h】

HeteroFusion: Dense Scene Reconstruction Integrating Multi-Sensors

机译:异熔化:整合多传感器的密集场景重建

获取原文
获取原文并翻译 | 示例

摘要

We present a novel approach to integrate data from multiple sensor types for dense 3D reconstruction of indoor scenes in realtime. Existing algorithms are mainly based on a single RGBD camera and thus require continuous scanning of areas with sufficient geometric features. Otherwise, tracking may fail due to unreliable frame registration. Inspired by the fact that the fusion of multiple sensors can combine their strengths towards a more robust and accurate self-localization, we incorporate multiple types of sensors which are prevalent in modern robot systems, including a 2D range sensor, an inertial measurement unit (IMU), and wheel encoders. We fuse their measurements to reinforce the tracking process and to eventually obtain better 3D reconstructions. Specifically, we develop a 2D truncated signed distance field (TSDF) volume representation for the integration and ray-casting of laser frames, leading to a unified cost function in the pose estimation stage. For validation of the estimated poses in the loop-closure optimization process, we train a classifier for the features extracted from heterogeneous sensors during the registration progress. To evaluate our method on challenging use case scenarios, we assembled a scanning platform prototype to acquire real-world scans. We further simulated synthetic scans based on high-fidelity synthetic scenes for quantitative evaluation. Extensive experimental evaluation on these two types of scans demonstrate that our system is capable of robustly acquiring dense 3D reconstructions and outperforms state-of-the-art RGBD and LiDAR systems.
机译:我们介绍了一种新的方法,将来自多种传感器类型的数据整合到实时的室内场景中的密集3D重建。现有算法主要基于单个RGBD相机,因此需要连续扫描具有足够几何特征的区域。否则,由于帧注册不可靠,跟踪可能会失败。灵感灵感,即多个传感器的融合可以将它们的优势与更强大和准确的自定位相结合,我们采用多种类型的传感器,其在现代机器人系统中普遍存在,包括2D范围传感器,惯性测量单元(IMU )和轮式编码器。我们融合了他们的测量以加强跟踪过程,并最终获得更好的3D重建。具体地,我们开发了用于激光帧的集成和射线铸造的2D截断距离字段(TSDF)音量表示,导致姿势估计阶段的统一成本函数。为了验证循环闭合优化过程中估计的姿势,我们在注册进度期间训练从异构传感器中提取的功能的分类器。为了评估挑战用例场景的方法,我们组装了一个扫描平台原型来获得真实扫描。我们进一步模拟基于高保真合成场景的合成扫描,用于定量评估。对这两种扫描的广泛实验评估表明,我们的系统能够强大地获取密集的3D重建和优于最先进的RGBD和LIDAR系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号