首页> 外文期刊>ACM Transactions on Graphics >Multi-Robot Collaborative Dense Scene Reconstruction
【24h】

Multi-Robot Collaborative Dense Scene Reconstruction

机译:多机器人协同密集场景重构

获取原文
获取原文并翻译 | 示例

摘要

We present an autonomous scanning approach which allows multiple robots to perform collaborative scanning for dense 3D reconstruction of unknown indoor scenes. Our method plans scanning paths for several robots, allowing them to efficiently coordinate with each other such that the collective scanning coverage and reconstruction quality is maximized while the overall scanning effort is minimized. To this end, we define the problem as a dynamic task assignment and introduce a novel formulation based on Optimal Mass Transport (OMT). Given the currently scanned scene, a set of task views are extracted to cover scene regions which are either unknown or uncertain. These task views are assigned to the robots based on the OMT optimization. We then compute for each robot a smooth path over its assigned tasks by solving an approximate traveling salesman problem. In order to showcase our algorithm, we implement a multi-robot auto-scanning system. Since our method is computationally efficient, we can easily run it in real time on commodity hardware, and combine it with online RGB-D reconstruction approaches. In our results, we show several real-world examples of large indoor environments; in addition, we build a benchmark with a series of carefully designed metrics for quantitatively evaluating multi-robot autoscanning. Overall, we are able to demonstrate high-quality scanning results with respect to reconstruction quality and scanning efficiency, which significantly outperforms existing multi-robot exploration systems.
机译:我们提出了一种自主扫描方法,该方法允许多个机器人执行协作扫描,以对未知室内场景进行密集的3D重建。我们的方法计划了几个机器人的扫描路径,使它们可以有效地相互协调,从而最大程度地提高了集体扫描的覆盖范围和重建质量,同时使总的扫描工作量最小化。为此,我们将问题定义为动态任务分配,并介绍基于最佳质量运输(OMT)的新颖公式。给定当前扫描的场景,提取一组任务视图以覆盖未知或不确定的场景区域。这些任务视图基于OMT优化分配给机器人。然后,我们通过解决一个近似的旅行推销员问题,为每个机器人计算完成其分配任务的平滑路径。为了展示我们的算法,我们实现了一个多机器人自动扫描系统。由于我们的方法计算效率高,因此我们可以轻松地在商品硬件上实时运行它,并将其与在线RGB-D重建方法结合起来。在我们的结果中,我们显示了几个大型室内环境的真实示例;此外,我们使用一系列精心设计的指标来建立基准,以定量评估多机器人自动扫描。总体而言,我们能够在重建质量和扫描效率方面展示高质量的扫描结果,大大优于现有的多机器人探测系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号