首页> 外文期刊>IEEE transactions on visualization and computer graphics >Deriving a particle system from continuum mechanics for the animation of deformable objects
【24h】

Deriving a particle system from continuum mechanics for the animation of deformable objects

机译:从连续体力学派生粒子系统以使可变形对象产生动画

获取原文
获取原文并翻译 | 示例

摘要

Mass-spring and particle systems have been widely employed in computer graphics to model deformable objects because they allow fast numerical solutions. In this work, we establish a link between these discrete models and classical mathematical elasticity. It turns out that discrete systems can be derived from a continuum model by a finite difference formulation and approximate classical continuum models unless the deformations are large. In this work, we present the derivation of a particle system from a continuum model, compare it to the models of classical elasticity theory, and assess its accuracy. In this way, we gain insight into the way discrete systems work and we are able to specify the correct scaling when the discretization is changed. Physical material parameters that describe materials in continuum mechanics are also used in the derived particle system.
机译:质量弹簧和粒子系统已广泛用于计算机图形学中,以对可变形对象建模,因为它们允许快速的数值解。在这项工作中,我们在这些离散模型和经典数学弹性之间建立了联系。事实证明,离散系统可以通过有限差分公式和近似经典连续模型从连续模型中导出,除非变形很大。在这项工作中,我们提出了一个粒子系统从一个连续体模型的推导,将其与经典弹性理论的模型进行比较,并评估其准确性。通过这种方式,我们可以了解离散系统的工作方式,并且能够在离散化更改时指定正确的缩放比例。在连续粒子力学中描述材料的物理材料参数也用于派生粒子系统中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号