首页> 外文期刊>IEEE transactions on visualization and computer graphics >A Parallelized Surface Extraction Algorithm for Large Binary Image Data Sets Based on an Adaptive 3-D Delaunay Subdivision Strategy
【24h】

A Parallelized Surface Extraction Algorithm for Large Binary Image Data Sets Based on an Adaptive 3-D Delaunay Subdivision Strategy

机译:基于自适应3-D Delaunay细分策略的大二进制图像数据集并行表面提取算法

获取原文
获取原文并翻译 | 示例

摘要

In this paper we describe a novel 3-D subdivision strategy to extract the surface of binary image data. This iterative approach generates a series of surface meshes that capture different levels of detail of the underlying structure. At the highest level of detail, the resulting surface mesh generated by our approach uses only about 10% of the triangles in comparison to the marching cube algorithm (MC) even in settings were almost no image noise is present. Our approach also eliminates the so-called ''''staircase effect'''' which voxel based algorithms like the MC are likely to show, particularly if non-uniformly sampled images are processed. Finally, we show how the presented algorithm can be parallelized by subdividing 3-D image space into rectilinear blocks of subimages. As the algorithm scales very well with an increasing number of processors in a multi-threaded setting, this approach is suited to process large image data sets of several gigabytes. Although the presented work is still computationally more expensive than simple voxel based algorithms, it produces fewer surface triangles while capturing the same level of detail, is more robust towards image noise and eliminates the above mentioned ''''stair-case'''' effect in anisotropic settings. These properties make it particularly useful for biomedical applications, where these conditions are often encountered.
机译:在本文中,我们描述了一种新颖的3-D细分策略,用于提取二进制图像数据的表面。这种迭代方法生成了一系列曲面网格,这些曲面网格捕获了底层结构的不同级别的细节。在最高的细节水平上,即使在几乎不存在图像噪声的情况下,与行进立方体算法(MC)相比,通过我们的方法生成的最终表面网格也仅使用了约10%的三角形。我们的方法还消除了所谓的“阶梯效应”(staircase effect),像MC这样的基于体素的算法很可能会表现出来,特别是在处理非均匀采样图像的情况下。最后,我们展示了如何通过将3-D图像空间细分为子图像的直线块来并行化提出的算法。由于在多线程设置中,随着处理器数量的增加,该算法可以很好地扩展,因此该方法适用于处理数GB的大型图像数据集。尽管提出的工作在计算上仍比基于简单体素的算法昂贵,但它在捕获相同水平的细节的同时产生更少的表面三角形,对图像噪声更健壮,并消除了上面提到的``阶梯式''情况在各向异性设置中起作用。这些特性使其对于经常遇到这些情况的生物医学应用特别有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号