首页> 外文期刊>Concurrency, practice and experience >Adaptive parallel Delaunay triangulation construction with dynamic pruned binary tree model in Cloud
【24h】

Adaptive parallel Delaunay triangulation construction with dynamic pruned binary tree model in Cloud

机译:云中动态修剪二叉树模型的自适应并行Delaunay三角剖分构造

获取原文
获取原文并翻译 | 示例

摘要

The paper illustrates a parallel and distributed scheme for computing a planar Delaunay triangulationrnusing a divide-and-conquer strategy in Cloud environment, which combines the incrementalrninsertion algorithm and the divide-and-conquer method. The proposed hybrid algorithmrnfor Delaunay triangulation construction is easy to be parallelized due to the dynamic prunedrncharacteristic of the binary treemodel used.Moreover, the Cloud platform decreases the communicationrnoverhead and improves data locality by making use of a data partitioning and integratingrnscheme offered by the map-reduce architecture. The implementation of the parallel and distributedrnversion of the algorithm relied on a robust data structure called quad-edge,which impliesrnthe geometric relationship among the edges and vertexes adjacent. More importantly, the datarnare serialized easily and transmitted efficiently between different Cloud nodes; the algorithmrnis executed conveniently on PC clusters. We tested the parallel version of the algorithm onrnGeoKSCloud, a geographical knowledge service Cloud developed by our research team. Experimentalrnresults show that the proposed hybrid algorithm is efficient and competitive; it can berneasily migrated and deployed in distributed and parallel computing environment, such as gridrnand Cloud. The parallel implementation of the hybrid algorithm has a good speed-up, while datarncommunication is the crucial factor for the efficiency of the parallel version. Overall, the parallelrnversion outperforms both the sequential divide-and-conquer algorithm and the sequentialrnincremental insertion algorithm.
机译:本文阐述了一种在云环境中采用分而治之策略计算平面Delaunay三角剖分的并行和分布式方案,该方案结合了增量插入算法和分而治之方法。由于所使用的二叉树模型的动态修剪特性,所提出的用于Delaunay三角剖分构造的混合算法易于并行化。此外,Cloud平台通过利用map-reduce提供的数据分区和集成方案来减少通信开销并改善数据局部性。建筑。该算法的并行和分布式版本的实现依赖于称为四边形的健壮数据结构,这意味着边缘和相邻顶点之间的几何关系。更重要的是,数据可以轻松地序列化并在不同的Cloud节点之间高效传输;该算法在PC群集上方便地执行。我们在研究团队开发的地理知识服务Cloud rnGeoKSCloud上测试了并行版本的算法。实验结果表明,所提出的混合算法是有效且具有竞争力的。它可以轻松地在分布式并行计算环境(例如gridrn和Cloud)中迁移和部署。混合算法的并行实现具有良好的加速性能,而数据通信是并行版本效率的关键因素。总体而言,并行版本优于顺序分而治之算法和顺序增量插入算法。

著录项

  • 来源
    《Concurrency, practice and experience》 |2017年第24期|e4157.1-e4157.10|共10页
  • 作者单位

    College of Computer and InformationSciences, Fujian Agriculture and ForestryUniversity, Fuzhou 350002, China Institute of Geographic Sciences and NaturalResources Research, CAS, Beijing 100101,China;

    College of Computer and InformationSciences, Fujian Agriculture and ForestryUniversity, Fuzhou 350002, China;

    College of Computer and InformationSciences, Fujian Agriculture and ForestryUniversity, Fuzhou 350002, China;

    College of Computer and InformationSciences, Fujian Agriculture and ForestryUniversity, Fuzhou 350002, China;

    College of Computer and InformationSciences, Fujian Agriculture and ForestryUniversity, Fuzhou 350002, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Delaunay TIN; distributed and parallel; cloud services; divide and conquer; incremental insertion;

    机译:Delaunay TIN;分布式并行云服务;分而治之;增量插入;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号