首页> 外文期刊>Visualization and Computer Graphics, IEEE Transactions on >Visualization and Exploration of Temporal Trend Relationships in Multivariate Time-Varying Data
【24h】

Visualization and Exploration of Temporal Trend Relationships in Multivariate Time-Varying Data

机译:多元时变数据中时间趋势关系的可视化与探索

获取原文
获取原文并翻译 | 示例

摘要

We present a new algorithm to explore and visualize multivariate time-varying data sets. We identify important trend relationships among the variables based on how the values of the variables change over time and how those changes are related to each other in different spatial regions and time intervals. The trend relationships can be used to describe the correlation and causal effects among the different variables. To identify the temporal trends from a local region, we design a new algorithm called SUBDTW to estimate when a trend appears and vanishes in a given time series. Based on the beginning and ending times of the trends, their temporal relationships can be modeled as a state machine representing the trend sequence. Since a scientific data set usually contains millions of data points, we propose an algorithm to extract important trend relationships in linear time complexity. We design novel user interfaces to explore the trend relationships, to visualize their temporal characteristics, and to display their spatial distributions. We use several scientific data sets to test our algorithm and demonstrate its utilities.
机译:我们提出了一种新的算法来探索和可视化多元时变数据集。我们根据变量的值如何随时间变化以及这些变化在不同的空间区域和时间间隔中如何相互关联来确定变量之间的重要趋势关系。趋势关系可以用来描述不同变量之间的相关性和因果关系。为了识别本地区域的时间趋势,我们设计了一种称为SUBDTW的新算法,以估计趋势在给定时间序列中何时出现和消失。基于趋势的开始和结束时间,可以将它们的时间关系建模为代表趋势序列的状态机。由于科学数据集通常包含数百万个数据点,因此我们提出了一种在线性时间复杂度中提取重要趋势关系的算法。我们设计新颖的用户界面来探索趋势关系,可视化其时间特征并显示其空间分布。我们使用几个科学数据集来测试我们的算法并证明其实用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号