首页> 外文期刊>Visualization and Computer Graphics, IEEE Transactions on >Efficient Edit Propagation Using Hierarchical Data Structure
【24h】

Efficient Edit Propagation Using Hierarchical Data Structure

机译:使用分层数据结构进行有效的编辑传播

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a novel unified hierarchical structure for scalable edit propagation. Our method is based on the key observation that in edit propagation, appearance varies very smoothly in those regions where the appearance is different from the user-specified pixels. Uniformly sampling in these regions leads to redundant computation. We propose to use a quadtree-based adaptive subdivision method such that more samples are selected in similar regions and less in those that are different from the user-specified regions. As a result, both the computation and the memory requirement are significantly reduced. In edit propagation, an edge-preserving propagation function is first built, and the full solution for all the pixels can be computed by interpolating from the solution obtained from the adaptively subdivided domain. Furthermore, our approach can be easily extended to accelerate video edit propagation using an adaptive octree structure. In order to improve user interaction, we introduce several new Gaussian Mixture Model (GMM) brushes to find pixels that are similar to the user-specified regions. Compared with previous methods, our approach requires significantly less time and memory, while achieving visually same results. Experimental results demonstrate the efficiency and effectiveness of our approach on high-resolution photographs and videos.
机译:本文提出了一种用于可扩展编辑传播的新颖的统一层次结构。我们的方法基于以下关键观察:在编辑传播中,在外观与用户指定的像素不同的区域中外观非常平滑。在这些区域中均匀采样会导致冗余计算。我们建议使用基于四叉树的自适应细分方法,以便在相似区域中选择更多样本,而在与用户指定区域不同的样本中选择更少。结果,显着减少了计算和存储需求。在编辑传播中,首先建立一个保留边缘的传播函数,然后可以通过对从自适应细分域获得的解进行插值来计算所有像素的完整解。此外,我们的方法可以很容易地扩展为使用自适应八叉树结构来加速视频编辑传播。为了改善用户交互,我们引入了几种新的高斯混合模型(GMM)画笔来查找与用户指定区域相似的像素。与以前的方法相比,我们的方法需要更少的时间和内存,同时获得视觉上相同的结果。实验结果证明了我们的方法在高分辨率照片和视频上的效率和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号