首页> 外文期刊>Visualization and Computer Graphics, IEEE Transactions on >Automated Analytical Methods to Support Visual Exploration of High-Dimensional Data
【24h】

Automated Analytical Methods to Support Visual Exploration of High-Dimensional Data

机译:支持高维数据可视化探索的自动分析方法

获取原文
获取原文并翻译 | 示例

摘要

Visual exploration of multivariate data typically requires projection onto lower dimensional representations. The number of possible representations grows rapidly with the number of dimensions, and manual exploration quickly becomes ineffective or even unfeasible. This paper proposes automatic analysis methods to extract potentially relevant visual structures from a set of candidate visualizations. Based on features, the visualizations are ranked in accordance with a specified user task. The user is provided with a manageable number of potentially useful candidate visualizations, which can be used as a starting point for interactive data analysis. This can effectively ease the task of finding truly useful visualizations and potentially speed up the data exploration task. In this paper, we present ranking measures for class-based as well as non-class-based scatterplots and parallel coordinates visualizations. The proposed analysis methods are evaluated on different data sets.
机译:视觉研究多元数据通常需要投影到低维表示上。可能的表示形式的数量随着尺寸的数量迅速增加,并且手动探索很快变得无效甚至不可行。本文提出了一种自动分析方法,以从一组候选可视化中提取潜在的相关视觉结构。基于功能,可视化根据指定的用户任务进行排名。为用户提供了可管理数量的潜在有用的候选可视化,可以将其用作交互式数据分析的起点。这可以有效地减轻寻找真正有用的可视化效果的任务,并有可能加速数据探索任务。在本文中,我们介绍了基于类以及基于非类的散点图和并行坐标可视化的排名度量。建议的分析方法在不同的数据集上进行评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号