首页> 外文期刊>IEEE transactions on visualization and computer graphics >High-Dimensional Visual Analytics: Interactive Exploration Guided by Pairwise Views of Point Distributions
【24h】

High-Dimensional Visual Analytics: Interactive Exploration Guided by Pairwise Views of Point Distributions

机译:高维视觉分析:以点分布的成对视图为指导的交互式探索

获取原文
获取原文并翻译 | 示例

摘要

We introduce a method for organizing multivariate displays and for guiding interactive exploration through high-dimensional data. The method is based on nine characterizations of the 2D distributions of orthogonal pairwise projections on a set of points in multidimensional Euclidean space. These characterizations include such measures as density, skewness, shape, outliers, and texture. Statistical analysis of these measures leads to ways for 1) organizing 2D scatterplots of points for coherent viewing, 2) locating unusual (outlying) marginal 2D distributions of points for anomaly detection and 3) sorting multivariate displays based on high-dimensional data, such as trees, parallel coordinates, and glyphs
机译:我们介绍了一种用于组织多元显示并通过高维数据指导交互式探索的方法。该方法基于多维欧几里得空间中一组点上正交成对投影的2D分布的九种特征。这些特征包括密度,偏度,形状,离群值和纹理等度量。对这些措施进行统计分析得出以下方法:1)组织点的2D散点图以进行连贯的查看; 2)定位点的异常(外围)边缘2D分布以进行异常检测; 3)根据高维度数据(例如,树,平行坐标和字形

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号