首页> 外文期刊>Visualization and Computer Graphics, IEEE Transactions on >Compressive Rendering: A Rendering Application of Compressed Sensing
【24h】

Compressive Rendering: A Rendering Application of Compressed Sensing

机译:压缩渲染:压缩感测的渲染应用

获取原文
获取原文并翻译 | 示例

摘要

Recently, there has been growing interest in compressed sensing (CS), the new theory that shows how a small set of linear measurements can be used to reconstruct a signal if it is sparse in a transform domain. Although CS has been applied to many problems in other fields, in computer graphics, it has only been used so far to accelerate the acquisition of light transport. In this paper, we propose a novel application of compressed sensing by using it to accelerate ray-traced rendering in a manner that exploits the sparsity of the final image in the wavelet basis. To do this, we raytrace only a subset of the pixel samples in the spatial domain and use a simple, greedy CS-based algorithm to estimate the wavelet transform of the image during rendering. Since the energy of the image is concentrated more compactly in the wavelet domain, less samples are required for a result of given quality than with conventional spatial-domain rendering. By taking the inverse wavelet transform of the result, we compute an accurate reconstruction of the desired final image. Our results show that our framework can achieve high-quality images with approximately 75 percent of the pixel samples using a nonadaptive sampling scheme. In addition, we also perform better than other algorithms that might be used to fill in the missing pixel data, such as interpolation or inpainting. Furthermore, since the algorithm works in image space, it is completely independent of scene complexity.
机译:最近,人们对压缩传感(CS)有了越来越多的兴趣,这种新理论表明,如果在变换域中信号稀疏,则如何使用一小部分线性测量来重建信号。尽管CS已应用于其他领域的许多问题,但在计算机图形学中,到目前为止,CS仅用于加速光传输的获取。在本文中,我们提出了一种压缩感知的新应用,通过利用压缩感知以小波为基础利用最终图像的稀疏性来加速光线跟踪渲染。为此,我们仅在空间域中射线跟踪像素样本的一个子集,并使用简单的基于贪婪CS的算法来估计渲染期间图像的小波变换。由于图像的能量更紧凑地集中在小波域中,因此与常规的空间域渲染相比,给定质量的结果所需的样本更少。通过对结果进行逆小波变换,我们计算出所需最终图像的精确重建。我们的结果表明,使用非自适应采样方案,我们的框架可以使用大约75%的像素采样来获得高质量的图像。此外,我们还比其他可用于填充丢失的像素数据的算法(例如插值或修复)表现更好。此外,由于该算法在图像空间中工作,因此它完全独立于场景复杂性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号