首页> 外文会议>International Conference on Theoretical and Applicative Aspects of Computer Science >Geometry-aware Compressive Dictionary Learning based Rendering
【24h】

Geometry-aware Compressive Dictionary Learning based Rendering

机译:基于几何感知的压缩字典学习渲染

获取原文

摘要

Compressive Sensing (CS) is a new sampling theory. It states that we can reconstruct a signal from very few measurements taken by projecting the signal rather than point sampling it. The signal can be reconstructed if it is sparse or sparse in some domain. This theory was employed recently in [1] to accelerate the rendering of ray-traced images, by rendering just a subset of pixels then applying the CS reconstruction to fill the missing ones using wavelet as a transform domain to seek the signal sparsity condition. In this paper, we use a learned dictionary rather than standard wavelet to better sparsify our images and hence improve the CS reconstruction. We also inject cheap geometry information (depth) to accurately reconstruct our images. Finally, we post-process our images by applying a modified version of the bilateral filter to improve the overall quality. Obtained results show a clear improvement in the quality of the image reconstruction while accelerating the rendering time as compared to [1].
机译:压缩感测(CS)是一种新的采样理论。它指出,我们可以通过投影信号而不是对信号进行点采样来从很少的测量中重建信号。如果信号在某个域中稀疏或稀疏,则可以对其进行重构。该理论最近在[1]中被采用来加速光线跟踪图像的渲染,方法是仅渲染像素子集,然后应用CS重建以小波作为变换域来填充丢失的像素,以寻找信号稀疏性条件。在本文中,我们使用学习词典而不是标准小波来更好地稀疏我们的图像,从而改善CS重建。我们还注入廉价的几何信息(深度)以准确地重建我们的图像。最后,我们通过应用双边滤镜的改进版本对图像进行后处理,以提高整体质量。与[1]相比,获得的结果表明,在加快渲染时间的同时,图像重建的质量有了明显改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号