首页> 外文期刊>Computing and informatics >LOSSY COMPRESSIVE SENSING BASED ON ONLINE DICTIONARY LEARNING
【24h】

LOSSY COMPRESSIVE SENSING BASED ON ONLINE DICTIONARY LEARNING

机译:基于在线词典学习的有损压缩感测

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a lossy compression of hyperspectral images is realized by using a novel online dictionary learning method in which three dimensional datasets can be compressed. This online dictionary learning method and blind compressive sensing (BCS) algorithm are combined in a hybrid lossy compression framework for the first time in the literature. According to the experimental results, BCS algorithm has the best compression performance when the compression bit rate is higher than or equal to 0.5 bps. Apart from observing rate-distortion performance, anomaly detection performance is also tested on the reconstructed images to measure the information preservation performance.
机译:本文通过一种新颖的在线字典学习方法实现了高光谱图像的有损压缩,该方法可以压缩三维数据集。该在线词典学习方法和盲压缩感知(BCS)算法在文献中首次结合在混合有损压缩框架中。根据实验结果,当压缩比特率大于或等于0.5 bps时,BCS算法具有最佳的压缩性能。除了观察速率失真性能外,还对重建图像测试异常检测性能,以测量信息保存性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号