首页> 外文期刊>IEEE transactions on visualization and computer graphics >Dimension Projection Matrix/Tree: Interactive Subspace Visual Exploration and Analysis of High Dimensional Data
【24h】

Dimension Projection Matrix/Tree: Interactive Subspace Visual Exploration and Analysis of High Dimensional Data

机译:维投影矩阵/树:交互式子空间可视化探索和高维数据分析

获取原文
获取原文并翻译 | 示例

摘要

For high-dimensional data, this work proposes two novel visual exploration methods to gain insights into the data aspect and the dimension aspect of the data. The first is a Dimension Projection Matrix, as an extension of a scatterplot matrix. In the matrix, each row or column represents a group of dimensions, and each cell shows a dimension projection (such as MDS) of the data with the corresponding dimensions. The second is a Dimension Projection Tree, where every node is either a dimension projection plot or a Dimension Projection Matrix. Nodes are connected with links and each child node in the tree covers a subset of the parent node's dimensions or a subset of the parent node's data items. While the tree nodes visualize the subspaces of dimensions or subsets of the data items under exploration, the matrix nodes enable cross-comparison between different combinations of subspaces. Both Dimension Projection Matrix and Dimension Project Tree can be constructed algorithmically through automation, or manually through user interaction. Our implementation enables interactions such as drilling down to explore different levels of the data, merging or splitting the subspaces to adjust the matrix, and applying brushing to select data clusters. Our method enables simultaneously exploring data correlation and dimension correlation for data with high dimensions.
机译:对于高维数据,这项工作提出了两种新颖的视觉探索方法,以获取对数据方面和数据维度方面的见解。第一个是维投影矩阵,是散点图矩阵的扩展。在矩阵中,每一行或每一列代表一组维,每个单元格显示具有相应维的数据的维投影(例如MDS)。第二个是维投影树,其中每个节点都是维投影图或维投影矩阵。节点通过链接连接,树中的每个子节点覆盖父节点维度的子集或父节点数据项的子集。当树节点可视化正在探索的数据项的维度或子集的子空间时,矩阵节点启用子空间的不同组合之间的交叉比较。 Dimension Projection Matrix和Dimension Project Tree都可以通过自动化算法构建,也可以通过用户交互手动构建。我们的实现实现了交互,例如向下钻取以探索不同级别的数据,合并或拆分子空间以调整矩阵,以及应用笔刷选择数据集群。我们的方法可以同时探索高维数据的数据相关性和维数相关性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号