首页> 外文期刊>Visualization and Computer Graphics, IEEE Transactions on >Visualizing nD Point Clouds as Topological Landscape Profiles to Guide Local Data Analysis
【24h】

Visualizing nD Point Clouds as Topological Landscape Profiles to Guide Local Data Analysis

机译:将nD点云可视化为拓扑景观剖面,以指导本地数据分析

获取原文
获取原文并翻译 | 示例

摘要

Analyzing high-dimensional point clouds is a classical challenge in visual analytics. Traditional techniques, such as projections or axis-based techniques, suffer from projection artifacts, occlusion, and visual complexity. We propose to split data analysis into two parts to address these shortcomings. First, a structural overview phase abstracts data by its density distribution. This phase performs topological analysis to support accurate and nonoverlapping presentation of the high-dimensional cluster structure as a topological landscape profile. Utilizing a landscape metaphor, it presents clusters and their nesting as hills whose height, width, and shape reflect cluster coherence, size, and stability, respectively. A second local analysis phase utilizes this global structural knowledge to select individual clusters or point sets for further, localized data analysis. Focusing on structural entities significantly reduces visual clutter in established geometric visualizations and permits a clearer, more thorough data analysis. This analysis complements the global topological perspective and enables the user to study subspaces or geometric properties, such as shape.
机译:分析高维点云是视觉分析中的经典挑战。诸如投影或基于轴的技术之类的传统技术会遭受投影伪影,遮挡和视觉复杂性的困扰。我们建议将数据分析分为两个部分以解决这些缺点。首先,结构概述阶段通过其密度分布来抽象数据。此阶段执行拓扑分析,以支持将高维簇结构作为拓扑景观剖面进行准确且不重叠的呈现。利用景观隐喻,它将群集及其嵌套呈现为山丘,其高度,宽度和形状分别反映群集的连贯性,大小和稳定性。第二个局部分析阶段利用此全局结构知识来选择单个聚类或点集,以进行进一步的局部数据分析。将重点放在结构实体上可大大减少已建立的几何图形中的视觉混乱,并允许进行更清晰,更彻底的数据分析。该分析补充了全局拓扑的观点,使用户能够研究子空间或几何属性,例如形状。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号