首页> 外文期刊>IEEE transactions on visualization and computer graphics >Scalable Topological Data Analysis and Visualization for Evaluating Data-Driven Models in Scientific Applications
【24h】

Scalable Topological Data Analysis and Visualization for Evaluating Data-Driven Models in Scientific Applications

机译:可扩展的拓扑数据分析和可视化,用于评估科学应用中的数据驱动模型

获取原文
获取原文并翻译 | 示例

摘要

With the rapid adoption of machine learning techniques for large-scale applications in science and engineering comes the convergence of two grand challenges in visualization. First, the utilization of black box models (e.g., deep neural networks) calls for advanced techniques in exploring and interpreting model behaviors. Second, the rapid growth in computing has produced enormous datasets that require techniques that can handle millions or more samples. Although some solutions to these interpretability challenges have been proposed, they typically do not scale beyond thousands of samples, nor do they provide the high-level intuition scientists are looking for. Here, we present the first scalable solution to explore and analyze high-dimensional functions often encountered in the scientific data analysis pipeline. By combining a new streaming neighborhood graph construction, the corresponding topology computation, and a novel data aggregation scheme, namely, we enable interactive exploration of both the topological and the geometric aspect of high-dimensional data. Following two use cases from high-energy-density (HED) physics and computational biology, we demonstrate how these capabilities have led to crucial new insights in both applications.
机译:随着机器学习技术在科学和工程中的大规模应用中的迅速采用,在可视化方面出现了两个重大挑战。首先,利用黑匣子模型(例如,深度神经网络)要求在探索和解释模型行为方面采用先进的技术。其次,计算的快速增长产生了庞大的数据集,这些数据集需要能够处理数百万或更多样本的技术。尽管已经提出了解决这些可解释性挑战的一些方法,但是它们通常不会扩展到成千上万个样本,也无法提供科学家正在寻找的高级直觉。在这里,我们提出了第一个可扩展的解决方案,用于探索和分析科学数据分析管道中经常遇到的高维函数。通过组合新的流式邻域图构造,相应的拓扑计算和新颖的数据聚合方案,即,我们可以对高维数据的拓扑和几何方面进行交互式探索。在高能密度(HED)物理和计算生物学的两个用例之后,我们演示了这些功能如何在这两种应用中带来了至关重要的新见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号