首页> 外文期刊>Visualization and Computer Graphics, IEEE Transactions on >Association Analysis for Visual Exploration of Multivariate Scientific Data Sets
【24h】

Association Analysis for Visual Exploration of Multivariate Scientific Data Sets

机译:多元科学数据集视觉探索的关联分析

获取原文
获取原文并翻译 | 示例

摘要

The heterogeneity and complexity of multivariate characteristics poses a unique challenge to visual exploration of multivariate scientific data sets, as it requires investigating the usually hidden associations between different variables and specific scalar values to understand the data's multi-faceted properties. In this paper, we present a novel association analysis method that guides visual exploration of scalar-level associations in the multivariate context. We model the directional interactions between scalars of different variables as information flows based on association rules. We introduce the concepts of informativeness and uniqueness to describe how information flows between scalars of different variables and how they are associated with each other in the multivariate domain. Based on scalar-level associations represented by a probabilistic association graph, we propose the Multi-Scalar Informativeness-Uniqueness (MSIU) algorithm to evaluate the informativeness and uniqueness of scalars. We present an exploration framework with multiple interactive views to explore the scalars of interest with confident associations in the multivariate spatial domain, and provide guidelines for visual exploration using our framework. We demonstrate the effectiveness and usefulness of our approach through case studies using three representative multivariate scientific data sets.
机译:多元特征的异质性和复杂性对多元科学数据集的视觉探索提出了独特的挑战,因为它需要调查不同变量和特定标量值之间通常隐藏的关联以了解数据的多面性。在本文中,我们提出了一种新颖的关联分析方法,该方法可指导在多变量上下文中对标量级关联进行视觉探索。我们基于关联规则,将不同变量的标量之间的定向交互建模为信息流。我们介绍了信息性和唯一性的概念,以描述信息如何在不同变量的标量之间流动以及它们如何在多元域中相互关联。基于概率关联图表示的标量级关联,我们提出了多标量信息唯一性(MSIU)算法来评估标量的信息性和唯一性。我们提出了一个具有多个交互视图的探索框架,以在多元空间域中以可信的关联探索感兴趣的标量,并为使用我们的框架进行视觉探索提供了指导。我们通过使用三个代表性的多元科学数据集的案例研究证明了我们方法的有效性和实用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号