首页> 外文期刊>IEEE transactions on visualization and computer graphics >What Would a Graph Look Like in this Layout? A Machine Learning Approach to Large Graph Visualization
【24h】

What Would a Graph Look Like in this Layout? A Machine Learning Approach to Large Graph Visualization

机译:图在此布局中将是什么样?大图可视化的机器学习方法

获取原文
获取原文并翻译 | 示例

摘要

Using different methods for laying out a graph can lead to very different visual appearances, with which the viewer perceives different information. Selecting a “good” layout method is thus important for visualizing a graph. The selection can be highly subjective and dependent on the given task. A common approach to selecting a good layout is to use aesthetic criteria and visual inspection. However, fully calculating various layouts and their associated aesthetic metrics is computationally expensive. In this paper, we present a machine learning approach to large graph visualization based on computing the topological similarity of graphs using graph kernels. For a given graph, our approach can show what the graph would look like in different layouts and estimate their corresponding aesthetic metrics. An important contribution of our work is the development of a new framework to design graph kernels. Our experimental study shows that our estimation calculation is considerably faster than computing the actual layouts and their aesthetic metrics. Also, our graph kernels outperform the state-of-the-art ones in both time and accuracy. In addition, we conducted a user study to demonstrate that the topological similarity computed with our graph kernel matches perceptual similarity assessed by human users.
机译:使用不同的方法来布置图形可能会导致非常不同的视觉外观,从而使观看者感知到不同的信息。因此,选择“好的”布局方法对于可视化图形很重要。选择可能是非常主观的,并取决于给定的任务。选择良好布局的常用方法是使用美学标准和外观检查。然而,完全计算各种布局及其相关联的美学度量在计算上是昂贵的。在本文中,我们提出了一种基于大型图可视化的机器学习方法,该方法基于使用图核计算图的拓扑相似性。对于给定的图形,我们的方法可以显示图形在不同布局中的外观,并估计其相应的美学指标。我们工作的重要贡献是开发了一种用于设计图形内核的新框架。我们的实验研究表明,我们的估算计算比计算实际布局及其美学指标要快得多。同样,我们的图形内核在时间和准确性上都优于最新的图形内核。此外,我们进行了一项用户研究,以证明使用我们的图核计算出的拓扑相似度与人类用户评估的感知相似度匹配。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号