首页> 外文期刊>IEEE transactions on visualization and computer graphics >Pattern-Driven Navigation in 2D Multiscale Visualizations with Scalable Insets
【24h】

Pattern-Driven Navigation in 2D Multiscale Visualizations with Scalable Insets

机译:具有可伸缩插图的2D多尺度可视化中的模式驱动导航

获取原文
获取原文并翻译 | 示例

摘要

We present Scalable Insets, a technique for interactively exploring and navigating large numbers of annotated patterns in multiscale visualizations such as gigapixel images, matrices, or maps. Exploration of many but sparsely-distributed patterns in multiscale visualizations is challenging as visual representations change across zoom levels, context and navigational cues get lost upon zooming, and navigation is time consuming. Our technique visualizes annotated patterns too small to be identifiable at certain zoom levels using insets, i.e., magnified thumbnail views of the annotated patterns. Insets support users in searching, comparing, and contextualizing patterns while reducing the amount of navigation needed. They are dynamically placed either within the viewport or along the boundary of the viewport to offer a compromise between locality and context preservation. Annotated patterns are interactively clustered by location and type. They are visually represented as an aggregated inset to provide scalable exploration within a single viewport. In a controlled user study with 18 participants, we found that Scalable Insets can speed up visual search and improve the accuracy of pattern comparison at the cost of slower frequency estimation compared to a baseline technique. A second study with 6 experts in the field of genomics showed that Scalable Insets is easy to learn and provides first insights into how Scalable Insets can be applied in an open-ended data exploration scenario.
机译:我们提出了可伸缩的插图,该技术用于交互式探索和导航多尺度可视化中的大量带注释的图案,例如千兆像素图像,矩阵或地图。在多尺度可视化中探索许多但稀疏分布的模式非常具有挑战性,因为可视化表示会在缩放级别之间变化,缩放时会丢失上下文和导航提示,并且导航非常耗时。我们的技术使用插图将注释的图案可视化得太小而无法在某些缩放级别进行识别,即插图的放大缩略图视图。插图支持用户搜索,比较和上下文化模式,同时减少所需的导航量。它们被动态放置在视口内或沿视口边界,以在局部性和上下文保留之间提供折衷。带注释的模式按位置和类型交互地聚类。它们在视觉上表示为聚合插图,以在单个视口内提供可扩展的探索。在一项由18名参与者参加的受控用户研究中,我们发现,可伸缩的嵌入集可以加快视觉搜索速度并提高模式比较的准确性,但与基线技术相比,其代价是频率估算的速度较慢。由基因组学领域的6位专家进行的第二项研究表明,可扩展插值易于学习,并且提供了可扩展插值如何在开放式数据探索方案中应用的初步见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号