首页> 外文期刊>IEEE transactions on visualization and computer graphics >Mo2Cap2: Real-time Mobile 3D Motion Capture with a Cap-mounted Fisheye Camera
【24h】

Mo2Cap2: Real-time Mobile 3D Motion Capture with a Cap-mounted Fisheye Camera

机译: Mo 2 Cap 2 :实时移动3D Mo tion Capture ,带有装有 的鱼眼镜头相机

获取原文
获取原文并翻译 | 示例

摘要

We propose the first real-time system for the egocentric estimation of 3D human body pose in a wide range of unconstrained everyday activities. This setting has a unique set of challenges, such as mobility of the hardware setup, and robustness to long capture sessions with fast recovery from tracking failures. We tackle these challenges based on a novel lightweight setup that converts a standard baseball cap to a device for high-quality pose estimation based on a single cap-mounted fisheye camera. From the captured egocentric live stream, our CNN based 3D pose estimation approach runs at 60 Hz on a consumer-level GPU. In addition to the lightweight hardware setup, our other main contributions are: 1) a large ground truth training corpus of top-down fisheye images and 2) a disentangled 3D pose estimation approach that takes the unique properties of the egocentric viewpoint into account. As shown by our evaluation, we achieve lower 3D joint error as well as better 2D overlay than the existing baselines.
机译:我们提出了第一个实时系统,用于在各种无限制的日常活动中对3D人体姿势进行以自我为中心的估计。此设置面临一系列独特的挑战,例如硬件设置的移动性以及如何从跟踪故障中快速恢复到长捕获会话的稳定性。我们基于一种新颖的轻巧装置来应对这些挑战,该装置将标准的棒球帽转换为基于安装在单个帽上的鱼眼镜头的高质量姿势估计设备。从捕获的以自我为中心的实时流中,我们基于CNN的3D姿态估计方法在消费者级GPU上以60 Hz的频率运行。除了轻巧的硬件设置之外,我们的其他主要贡献是:1)大型的自顶向下的鱼眼图像地面实况训练语料库;以及2)结合了以自我为中心的视点的独特属性的解缠结3D姿势估计方法。如我们的评估所示,与现有基准相比,我们实现了更低的3D关节误差以及更好的2D覆盖。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号