首页> 外文期刊>IEEE transactions on visualization and computer graphics >A Sampling Approach to Generating Closely Interacting 3D Pose-Pairs from 2D Annotations
【24h】

A Sampling Approach to Generating Closely Interacting 3D Pose-Pairs from 2D Annotations

机译:一种从2D注释生成紧密交互的3D姿势对的采样方法

获取原文
获取原文并翻译 | 示例

摘要

We introduce a data-driven method to generate a large number of plausible, closely interacting 3D human pose-pairs, for a given motion category, e.g., wrestling or salsa dance. With much difficulty in acquiring close interactions using 3D sensors, our approach utilizes abundant existing video data which cover many human activities. Instead of treating the data generation problem as one of reconstruction, either through 3D acquisition or direct 2D-to-3D data lifting from video annotations, we present a solution based on Markov Chain Monte Carlo (MCMC) sampling. Given a motion category and a set of video frames depicting the motion with the 2D pose-pair in each frame annotated, we start the sampling with one or few seed 3D pose-pairs which are manually created based on the target motion category. The initial set is then augmented by MCMC sampling around the seeds, via the Metropolis-Hastings algorithm and guided by a probability density function (PDF) that is defined by two terms to bias the sampling towards 3D pose-pairs that are physically valid and plausible for the motion category. With a focus on efficient sampling over the space of close interactions, rather than pose spaces, we develop a novel representation called interaction coordinates (IC) to encode both poses and their interactions in an integrated manner. Plausibility of a 3D pose-pair is then defined based on the IC and with respect to the annotated 2D pose-pairs from video. We show that our sampling-based approach is able to efficiently synthesize a large volume of plausible, closely interacting 3D pose-pairs which provide a good coverage of the input 2D pose-pairs.
机译:对于给定的运动类别(例如摔跤或莎莎舞),我们引入了一种数据驱动的方法来生成大量合理的,紧密交互的3D人类姿势对。由于很难使用3D传感器获取紧密的互动,因此我们的方法利用了涵盖许多人类活动的大量现有视频数据。我们没有提出通过3D采集或从视频注释中提取直接2D到3D数据作为重建方法之一的数据生成问题,而是提出了一种基于Markov Chain Monte Carlo(MCMC)采样的解决方案。给定一个运动类别和一组视频帧,这些运动帧在每个帧中都带有2D姿势对来描述运动,我们从一个或几个种子3D姿势对开始采样,这些种子3D姿势对是根据目标运动类别手动创建的。然后通过Metropolis-Hastings算法通过种子周围的MCMC采样来增强初始集合,并通过概率密度函数(PDF)进行指导,该概率密度函数由两个术语定义,以将采样偏向于物理上有效且合理的3D姿势对。用于运动类别。我们着重于对紧密交互空间而非姿势空间进行有效采样,我们开发了一种称为交互坐标(IC)的新颖表示形式,以集成方式对姿势及其交互进行编码。然后基于IC并针对视频中带注释的2D姿势对定义3D姿势对的合理性。我们证明了基于采样的方法能够有效地合成大量合理的,紧密交互的3D姿势对,从而很好地覆盖了输入2D姿势对。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号